1
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Input x(t) and output y(t) of an LTI system are related by the differential equation y"(t) - y'(t) - 6y(t) = x(t). If the system is neither causal nor stable, the imulse response h(t) of the system is
A
$${1 \over 5}{e^{3t}}u( - t) + {1 \over 5}{e^{ - 2t}}u( - t)$$
B
$${{ - 1} \over 5}{e^{3t}}u( - t) + {1 \over 5}{e^{ - 2t}}u( - t)$$
C
$${1 \over 5}{e^{3t}}u( - t) + {1 \over 5}{e^{ - 2t}}u(t)$$
D
$${{ - 1} \over 5}{e^{3t}}u( - t) - {1 \over 5}{e^{ - 2t}}u(t)$$
2
GATE ECE 2013
MCQ (Single Correct Answer)
+2
-0.6
The impulse response of a continuous time system is given by $$h(t) = \delta (t - 1) + \delta (t - 3)$$. The value of the step response at t = 2 is
A
0
B
1
C
2
D
3
3
GATE ECE 2012
MCQ (Single Correct Answer)
+2
-0.6
The input x(t) and output y(t) of a system are related as y(t) = $$\int\limits_{ - \infty }^t x (\tau )\cos (3\tau )d\tau $$.

The system is

A
time-invariant and stable.
B
stable and not time-invariant.
C
time-invariant and not stable.
D
not time-invariant and not stable.
4
GATE ECE 2011
MCQ (Single Correct Answer)
+2
-0.6
An input x(t) = exp( -2t) u(t) + $$\delta $$(t-6) is applied to an LTI system with impulse response h(t) = u(t). The output is
A
[ 1- exp( -2t)] u(t) + u(t+6)
B
[ 1- exp( -2t)] u(t) + u(t-6)
C
0.5 [1 - exp( -2t)] u(t) + u(t+6)
D
0.5 [1- exp( -2t)] u(t) + u(t-6)
GATE ECE Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12