1
GATE ECE 2017 Set 2
Numerical
+2
-0
The rank of the matrix $$\left[ {\matrix{ 1 & { - 1} & 0 & 0 & 0 \cr 0 & 0 & 1 & { - 1} & 0 \cr 0 & 1 & { - 1} & 0 & 0 \cr { - 1} & 0 & 0 & 0 & 1 \cr 0 & 0 & 0 & 1 & { - 1} \cr } } \right]$$ is __________.
Your input ____
2
GATE ECE 2016 Set 1
Numerical
+2
-0
A sequence $$x\left[ n \right]$$ is specified as $$$\left[ {\matrix{ {x\left[ n \right]} \cr {x\left[ {n - 1} \right]} \cr } } \right] = {\left[ {\matrix{ 1 & 1 \cr 1 & 0 \cr } } \right]^n}\left[ {\matrix{ 1 \cr 0 \cr } } \right],\,\,for\,\,n \ge 2.$$$
The initial conditions are $$x\left[ 0 \right] = 1,\,\,x\left[ 1 \right] = 1$$ and $$x\left[ n \right] = 0$$ for $$n < 0.$$ The value of $$x\left[ {12} \right]$$ is __________.
Your input ____
3
GATE ECE 2016 Set 3
MCQ (Single Correct Answer)
+2
-0.6
If the vectors $${e_1} = \left( {1,0,2} \right),\,{e_2} = \left( {0,1,0} \right)$$ and $${e_3} = \left( { - 2,0,1} \right)$$ form an orthogonal basis of the three dimensional real space $${R^3},$$ then the vectors $$u = \left( {4,3, - 3} \right) \in {R^3}$$ can be expressed as
A
$$u = - {2 \over 5}{e_1} - 3{e_2} - {{11} \over 5}{e_3}$$
B
$$u = - {2 \over 5}{e_1} - 3{e_2} + {{11} \over 5}{e_3}$$
C
$$u = - {2 \over 5}{e_1} + 3{e_2} + {{11} \over 5}{e_3}$$
D
$$u = - {2 \over 5}{e_1} + 3{e_2} - {{11} \over 5}{e_3}$$
4
GATE ECE 2016 Set 2
Numerical
+2
-0
The matrix $$A = \left[ {\matrix{ a & 0 & 3 & 7 \cr 2 & 5 & 1 & 3 \cr 0 & 0 & 2 & 4 \cr 0 & 0 & 0 & b \cr } } \right]$$ has det
$$(A)=100$$ and trace $$(A)=14.$$ The value of $$\left| {a - b} \right|$$ is ___________.
Your input ____
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12