1
GATE ECE 2006
MCQ (Single Correct Answer)
+2
-0.6
The eigen values and the correspondinng eigen vectors of a $$2 \times 2$$ matrix are given by
Eigen value
$${\lambda _1} = 8$$
$${\lambda _2} = 4$$
Eigen vector
$${V_1} = \left[ {\matrix{
1 \cr
1 \cr
} } \right]$$
$${V_2} = \left[ {\matrix{
1 \cr
-1 \cr
} } \right]$$
The matrix is
2
GATE ECE 2005
MCQ (Single Correct Answer)
+2
-0.6
Given the matrix $$\left[ {\matrix{
{ - 4} & 2 \cr
4 & 3 \cr
} } \right],$$ the eigen vector is
3
GATE ECE 2005
MCQ (Single Correct Answer)
+2
-0.6
Given an orthogonal matrix $$A = \left[ {\matrix{
1 & 1 & 1 & 1 \cr
1 & 1 & { - 1} & { - 1} \cr
1 & { - 1} & 0 & 0 \cr
0 & 0 & 1 & { - 1} \cr
} } \right]$$ then the value of $${\left( {A{A^T}} \right)^{ - 1}}$$ is
4
GATE ECE 2005
MCQ (Single Correct Answer)
+2
-0.6
If $$A = \left[ {\matrix{
2 & { - 0.1} \cr
0 & 3 \cr
} } \right]$$ and $${A^{ - 1}} = \left[ {\matrix{
{{\raise0.5ex\hbox{$\scriptstyle 1$}
\kern-0.1em/\kern-0.15em
\lower0.25ex\hbox{$\scriptstyle 2$}}} & a \cr
0 & b \cr
} } \right]$$ then $$a+b=$$
Questions Asked from Linear Algebra (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Communications
Electromagnetics
General Aptitude