Let $$x$$ be an $$n \times 1$$ real column vector with length $$l = \sqrt {{x^T}x} $$. The trace of the matrix $$P = x{x^T}$$ is
The state equation of a second order system is
$$x(t) = Ax(t),\,\,\,\,x(0)$$ is the initial condition.
Suppose $$\lambda_1$$ and $$\lambda_2$$ are two distinct eigenvalues of A and $$v_1$$ and $$v_2$$ are the corresponding eigenvectors. For constants $$\alpha_1$$ and $$\alpha_2$$, the solution, $$x(t)$$, of the state equation is
Let $$\alpha$$, $$\beta$$ two non-zero real numbers and v1, v2 be two non-zero real vectors of size 3 $$\times$$ 1. Suppose that v1 and v2 satisfy $$v_1^T{v_2} = 0$$, $$v_1^T{v_1} = 1$$ and $$v_2^T{v_2} = 1$$. Let A be the 3 $$\times$$ 3 matrix given by :
A = $$\alpha$$v1$$v_1^T$$ + $$\beta$$v2$$v_2^T$$
The eigen values of A are __________.