1
GATE ECE 2009
MCQ (Single Correct Answer)
+2
-0.6
The eigen values of the following matrix $$\left[ {\matrix{ { - 1} & 3 & 5 \cr { - 3} & { - 1} & 6 \cr 0 & 0 & 3 \cr } } \right]$$ are
A
$$3, 3 + 5j, 6 - j$$
B
$$-6 + 5j, 3 + j, 3 - j$$
C
$$3+j, 3-j, 5+j$$
D
$$3, -1+3j, -1-3j$$
2
GATE ECE 2006
MCQ (Single Correct Answer)
+2
-0.6
The eigen values and the correspondinng eigen vectors of a $$2 \times 2$$ matrix are given by

Eigen value
$${\lambda _1} = 8$$
$${\lambda _2} = 4$$

Eigen vector
$${V_1} = \left[ {\matrix{ 1 \cr 1 \cr } } \right]$$
$${V_2} = \left[ {\matrix{ 1 \cr -1 \cr } } \right]$$

The matrix is

A
$$\left[ {\matrix{ 6 & 2 \cr 2 & 6 \cr } } \right]$$
B
$$\left[ {\matrix{ 4 & 6 \cr 6 & 4 \cr } } \right]$$
C
$$\left[ {\matrix{ 2 & 4 \cr 4 & 2 \cr } } \right]$$
D
$$\left[ {\matrix{ 4 & 8 \cr 8 & 4 \cr } } \right]$$
3
GATE ECE 2005
MCQ (Single Correct Answer)
+2
-0.6
Given an orthogonal matrix $$A = \left[ {\matrix{ 1 & 1 & 1 & 1 \cr 1 & 1 & { - 1} & { - 1} \cr 1 & { - 1} & 0 & 0 \cr 0 & 0 & 1 & { - 1} \cr } } \right]$$ then the value of $${\left( {A{A^T}} \right)^{ - 1}}$$ is
A
$${1 \over 4}{{\rm I}_4}$$
B
$${1 \over 2}{{\rm I}_4}$$
C
$${\rm I}$$
D
$${1 \over 3}{{\rm I}_4}$$
4
GATE ECE 2005
MCQ (Single Correct Answer)
+2
-0.6
Given the matrix $$\left[ {\matrix{ { - 4} & 2 \cr 4 & 3 \cr } } \right],$$ the eigen vector is
A
$$\left[ {\matrix{ 3 \cr 2 \cr } } \right]$$
B
$$\left[ {\matrix{ 4 \cr 3 \cr } } \right]$$
C
$$\left[ {\matrix{ 2 \cr { - 1} \cr } } \right]$$
D
$$\left[ {\matrix{ { - 2} \cr 1 \cr } } \right]$$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12