1
GATE ECE 2002
MCQ (Single Correct Answer)
+2
-0.6
The Laplace transform of a continuous - time signal x(t) is $$X\left( s \right) = {{5 - s} \over {{s^2} - s - 2}}$$. If the Fourier transform of tyhis signal exists, then x(t) is
A
$${e^{2t}}u\left( t \right) - 2\,{e^{ - t}}u\left( t \right)$$
B
$$ - {e^{2t}}u\left( { - t} \right) + 2\,{e^{ - t}}u\left( t \right)$$
C
$$ - {e^{2t}}u\left( { - t} \right) - 2\,{e^{ - t}}u\left( t \right)$$
D
$${e^{2t}}u\left( { - t} \right) - 2\,{e^{ - t}}u\left( t \right)$$
2
GATE ECE 1996
MCQ (Single Correct Answer)
+2
-0.6
The inverse Laplace transform of the function $${{s + 5} \over {\left( {s + 1} \right)\left( {s + 3} \right)}}$$ is
A
$$\,2{e^{ - t}}\, - \,{e^{ \to - 3t}}$$
B
$$\,2{e^{ - t}}\, + \,{e^{ \to - 3t}}$$
C
$${e^{ - t}}\, - \,2\,{e^{ - 3t}}\,$$
D
$$\,\,{e^{ - t}}\, + \,2{e^{ - 3t}}$$
3
GATE ECE 1993
Fill in the Blanks
+2
-0
The Laplace transform of the periodioc function f(t) describe4d by the curve below, i.e., $$f\left( t \right) = \left\{ {\matrix{ {\sin \,t\,\,\,if\,\left( {2n - 1} \right)\pi \le t \le 2n\pi } \cr {0\,\,\,\,\,\,\,\,otherwise} \cr } } \right.$$
is _________. (fill in the blank), n is an integer. GATE ECE 1993 Signals and Systems - Continuous Time Signal Laplace Transform Question 20 English
4
GATE ECE 1993
MCQ (Single Correct Answer)
+2
-0.6
If $$F\left( s \right) = L\left[ {f\left( t \right)} \right] = {K \over {\left( {s + 1} \right)\,\left( {{s^2} + 4} \right)}}$$ then $$\matrix{ {Lim\,f\,\left( t \right)} \cr {t \to \infty } \cr } $$ is given by
A
K/4
B
zero
C
infinite
D
undefined
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12