1
GATE ECE 1996
MCQ (Single Correct Answer)
+2
-0.6
The inverse Laplace transform of the function $${{s + 5} \over {\left( {s + 1} \right)\left( {s + 3} \right)}}$$ is
2
GATE ECE 1993
Fill in the Blanks
+2
-0
The Laplace transform of the periodioc function f(t) describe4d by the curve below, i.e.,
$$f\left( t \right) = \left\{ {\matrix{
{\sin \,t\,\,\,if\,\left( {2n - 1} \right)\pi \le t \le 2n\pi } \cr
{0\,\,\,\,\,\,\,\,otherwise} \cr
} } \right.$$
is _________. (fill in the blank), n is an integer.
is _________. (fill in the blank), n is an integer.
3
GATE ECE 1993
MCQ (Single Correct Answer)
+2
-0.6
If $$F\left( s \right) = L\left[ {f\left( t \right)} \right] = {K \over {\left( {s + 1} \right)\,\left( {{s^2} + 4} \right)}}$$ then $$\matrix{
{Lim\,f\,\left( t \right)} \cr
{t \to \infty } \cr
} $$ is given by
4
GATE ECE 1988
MCQ (Single Correct Answer)
+2
-0.6
The Laplace transform of a function f(t)u(t), where f(t) is periodic with period T, is A(s) times the Laplace transform of its first period. Then
Questions Asked from Continuous Time Signal Laplace Transform (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2016 Set 1 (1)
GATE ECE 2015 Set 2 (1)
GATE ECE 2015 Set 1 (1)
GATE ECE 2014 Set 1 (1)
GATE ECE 2014 Set 4 (3)
GATE ECE 2014 Set 3 (1)
GATE ECE 2013 (1)
GATE ECE 2011 (1)
GATE ECE 2010 (1)
GATE ECE 2009 (1)
GATE ECE 2006 (1)
GATE ECE 2005 (1)
GATE ECE 2002 (1)
GATE ECE 1996 (1)
GATE ECE 1993 (2)
GATE ECE 1988 (1)
GATE ECE 1987 (1)
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series Discrete Time Signal Fourier Series Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Transmission of Signal Through Continuous Time LTI Systems Discrete Time Linear Time Invariant Systems Sampling Continuous Time Signal Laplace Transform Discrete Fourier Transform and Fast Fourier Transform Transmission of Signal Through Discrete Time Lti Systems Miscellaneous Fourier Transform
Communications
Electromagnetics
General Aptitude