1
GATE ECE 2006
MCQ (Single Correct Answer)
+2
-0.6
Consider the function f(t) having Laplace transform $$F\left( s \right) = {{{\omega _0}} \over {{s^2} + {\omega _0}^2}}\,\,\,\,\,\,{\mathop{\rm Re}\nolimits} \left( s \right) > 0$$

The final value of f(t) would be:

A
0
B
1
C
$$ - e\,\,\, - 1 \le f\left( \infty \right) \le 1$$
D
$$\infty $$
2
GATE ECE 2005
MCQ (Single Correct Answer)
+2
-0.6
In what range should Re(s) remain so that the Laplace transform of the function e(a+2)t+5 exists?
A
Re(s) > a+2
B
Re(s) > a+7
C
Re(s) < 2
D
Re(s) > a+5
3
GATE ECE 2002
MCQ (Single Correct Answer)
+2
-0.6
The Laplace transform of a continuous - time signal x(t) is $$X\left( s \right) = {{5 - s} \over {{s^2} - s - 2}}$$. If the Fourier transform of tyhis signal exists, then x(t) is
A
$${e^{2t}}u\left( t \right) - 2\,{e^{ - t}}u\left( t \right)$$
B
$$ - {e^{2t}}u\left( { - t} \right) + 2\,{e^{ - t}}u\left( t \right)$$
C
$$ - {e^{2t}}u\left( { - t} \right) - 2\,{e^{ - t}}u\left( t \right)$$
D
$${e^{2t}}u\left( { - t} \right) - 2\,{e^{ - t}}u\left( t \right)$$
4
GATE ECE 1996
MCQ (Single Correct Answer)
+2
-0.6
The inverse Laplace transform of the function $${{s + 5} \over {\left( {s + 1} \right)\left( {s + 3} \right)}}$$ is
A
$$\,2{e^{ - t}}\, - \,{e^{ \to - 3t}}$$
B
$$\,2{e^{ - t}}\, + \,{e^{ \to - 3t}}$$
C
$${e^{ - t}}\, - \,2\,{e^{ - 3t}}\,$$
D
$$\,\,{e^{ - t}}\, + \,2{e^{ - 3t}}$$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12