1
GATE ECE 2014 Set 1
MCQ (Single Correct Answer)
+2
-0.6
A system is described by the following differential equation, where u(t) is the input to the system and y(t) is output of the system $$\mathop y\limits^ \bullet \left( t \right) + 5y\left( t \right) = u\left( t \right)$$

When y(0) = 1 and u(t) is a unit step function, y(t) is

A
0.2+0.8e-5t
B
0.2-0.2e-5t
C
0.8+0.2e-5t
D
0.8-0.8e-5t
2
GATE ECE 2013
MCQ (Single Correct Answer)
+2
-0.6
A system is described by the differential equation $$${{{d^2}y} \over {d{t^2}}} + 5{{dy} \over {dt}} + 6y\left( t \right) = x\left( t \right)$$$
Let x(t) be a rectangular pulse given by $$$x\left( t \right) = \left\{ {\matrix{ {1\,\,\,\,\,\,\,\,\,0 \le \,t\, \le 2} \cr {0\,\,\,\,\,otherwise} \cr } } \right.$$$

Assuming that y(0) = 0 $${{dy} \over {dt}} = 0$$ at t = 0, the Laplace transform of y(t) is

A
$${{{e^{ - 2s}}} \over {s\left( {s + 2} \right)\left( {s + 3} \right)}}$$
B
$${{1 - {e^{ - 2s}}} \over {s\left( {s + 2} \right)\left( {s + 3} \right)}}$$
C
$${{{e^{ - 2s}}} \over {\left( {s + 2} \right)\left( {s + 3} \right)}}$$
D
$${{1 - {e^{ - 2s}}} \over {\left( {s + 2} \right)\left( {s + 3} \right)}}$$
3
GATE ECE 2011
MCQ (Single Correct Answer)
+2
-0.6
If $$F\left( s \right) = L\left[ {f\left( t \right)} \right] = {{2\left( {s + 1} \right)} \over {{s^2} + 4s + 7}}$$ then the initial and final values of f(t) are respectively
A
0, 2
B
2, 0
C
0, 2/7
D
2/7, 0
4
GATE ECE 2010
MCQ (Single Correct Answer)
+2
-0.6
Given f(t) = $${L^{ - 1}}\left[ {{{3s + 1} \over {{s^3} + 4{s^2} + \left( {K - 3} \right)s}}} \right].$$ If $$\matrix{ {Lim\,f\,\left( t \right) = 1,} \cr {t \to \infty } \cr } \,\,$$ then the value of K is
A
1
B
2
C
3
D
4
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12