1
GATE ECE 2017 Set 2
Numerical
+2
-0
Consider an LTI system with magnitude response $$$\left| {H(f)} \right| = \left\{ {\matrix{
{1 - \,{{\left| f \right|} \over {20}},} & {\left| f \right| \le 20} \cr
{0,} & {\left| f \right| > 20} \cr
} } \right.$$$ and phase response Arg[H(f)]= - 2f.
If the input to the system is $$x(t) = 8\cos \left( {20\pi t + \,{\pi \over 4}} \right) + \,16\sin \left( {40\pi t + {\pi \over 8}} \right) + 24\,\cos \left( {80\pi t + {\pi \over {16}}} \right)$$
Then the average power of the output signal y(t) is_____________.
If the input to the system is $$x(t) = 8\cos \left( {20\pi t + \,{\pi \over 4}} \right) + \,16\sin \left( {40\pi t + {\pi \over 8}} \right) + 24\,\cos \left( {80\pi t + {\pi \over {16}}} \right)$$
Then the average power of the output signal y(t) is_____________.
Your input ____
2
GATE ECE 2017 Set 1
Numerical
+2
-0
A continuous time signal x(t) = $$4\cos (200\pi t)$$ + $$8\cos(400\pi t)$$, where t is in seconds, is the input to a linear time invariant (LTI) filter with the impulse response $$h(t) = \left\{ {{{2\sin (300\pi t)} \over {\matrix{
{\pi t} \cr
{600} \cr
} }}} \right.\,,\,\matrix{
t \cr
t \cr
} \,\matrix{
\ne \cr
= \cr
} \,\matrix{
0 \cr
0 \cr
} $$
Let y(t) be the output of this filter. The maximum value of $$\left| {y(t)} \right|$$ is ________________________.
Your input ____
3
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
The output of a standrad second-order system for a unit step input is given as $$y(t) = 1 - {2 \over {\sqrt 3 }}{e^{ - t}}\cos \left( {\sqrt 3 t - {\pi \over 6}} \right)$$.
The transfer function of the system is
4
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+2
-0.6
Input x(t) and output y(t) of an LTI system are related by the differential equation y"(t) - y'(t) - 6y(t) = x(t). If the system is neither causal nor stable, the imulse response h(t) of the system is
Questions Asked from Continuous Time Linear Invariant System (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2017 Set 2 (3)
GATE ECE 2017 Set 1 (1)
GATE ECE 2015 Set 2 (2)
GATE ECE 2013 (1)
GATE ECE 2012 (1)
GATE ECE 2011 (1)
GATE ECE 2010 (1)
GATE ECE 2009 (1)
GATE ECE 2008 (2)
GATE ECE 2007 (1)
GATE ECE 2006 (1)
GATE ECE 2005 (1)
GATE ECE 2004 (3)
GATE ECE 2001 (1)
GATE ECE 2000 (2)
GATE ECE 1997 (1)
GATE ECE 1994 (1)
GATE ECE 1991 (2)
GATE ECE 1990 (2)
GATE ECE 1988 (1)
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series Discrete Time Signal Fourier Series Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Transmission of Signal Through Continuous Time LTI Systems Discrete Time Linear Time Invariant Systems Sampling Continuous Time Signal Laplace Transform Discrete Fourier Transform and Fast Fourier Transform Transmission of Signal Through Discrete Time Lti Systems Miscellaneous Fourier Transform
Communications
Electromagnetics
General Aptitude