1
GATE ECE 2022
Numerical
+1
-0.33
Let x1(t) = e$$-$$t u(t) and x2(t) = u(t) $$-$$ u(t $$-$$ 2), where u( . ) denotes the unit step function. If y(t) denotes the convolution of x1(t) and x2(t), then $$\mathop {\lim }\limits_{t \to \infty } y(t)$$ = __________ (rounded off to one decimal place).
Your input ____
2
GATE ECE 2016 Set 1
Numerical
+1
-0
A continuous-time sinusoid of frequency 33 Hz is multiplied with a periodic Dirac impulse train of frequency 46 Hz. The resulting signal is passed through an ideal analog low-pass filter with a cutoff frequency of 23Hz. The fundamental frequency (in Hz) of the output is _____________________.
Your input ____
3
GATE ECE 2014 Set 4
MCQ (Single Correct Answer)
+1
-0.3
A real - values signal x(t) limited to the frequency band $$\left| f \right| \le {W \over 2}$$ is passed through a linear time invariant system whose frequency response is
$$H(f) = \left\{ {\matrix{ {{e^{ - j4\pi f}},} & {\left| f \right| \le \,{W \over 2}} \cr {0,} & {\left| f \right| > \,{W \over 2}} \cr } } \right.$$
$$H(f) = \left\{ {\matrix{ {{e^{ - j4\pi f}},} & {\left| f \right| \le \,{W \over 2}} \cr {0,} & {\left| f \right| > \,{W \over 2}} \cr } } \right.$$
The output of the system is
4
GATE ECE 2013
MCQ (Single Correct Answer)
+1
-0.3
Let g(t) = $${e^{ - \pi {t^2}}}$$, and h(t) is a filter matched to g(t). If g(t) is applied as input to h(t), then the Fourier transform of the output is
Questions Asked from Transmission of Signal Through Continuous Time LTI Systems (Marks 1)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series Discrete Time Signal Fourier Series Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Transmission of Signal Through Continuous Time LTI Systems Discrete Time Linear Time Invariant Systems Sampling Continuous Time Signal Laplace Transform Discrete Fourier Transform and Fast Fourier Transform Transmission of Signal Through Discrete Time Lti Systems Miscellaneous Fourier Transform
Communications
Electromagnetics
General Aptitude