1
GATE ECE 2010
+1
-0.3
A system with the transfer function $${{Y(s)} \over {X(s)}} = {s \over {s + p}}\,\,$$ has an output
$$y(t) = \cos \left( {2t - {\pi \over 3}} \right)\,$$ for the input signal
$$x(t) = p\cos \left( {2t - {\pi \over 2}} \right)$$. Then, the system parameter 'p' is
A
$$\sqrt 3$$
B
$$\,{2 \over {\sqrt 3 \,}}$$
C
1
D
$${{\sqrt 3 \,} \over 2}$$
2
GATE ECE 2006
+1
-0.3
In the system shown below,
x(t) = (sint)u(t). In steady-state, the response y(t) will be A
$${1 \over {\sqrt 2 }}\sin \left( {t - {\pi \over 4}} \right)$$
B
$${1 \over {\sqrt 2 }}\sin \left( {t + {\pi \over 4}} \right)$$
C
$${1 \over {\sqrt 2 }}{e^{ - t}}\sin (t)$$
D
$$\sin (t) - \cos (t)$$
3
GATE ECE 2006
+1
-0.3
A low-pass filter having a frequency response $$H(j\omega )$$ = $$A(\omega ){e^{j\Phi (\omega )}}$$, does not product any phase distortion if
A
$$A(\omega ) = C{\omega ^2},\,\,\phi (\omega ) = K{\omega ^3}$$
B
$$A(\omega ) = C{\omega ^2},\,\,\phi (\omega ) = K\omega$$
C
$$A(\omega ) = C\omega ,\,\,\phi (\omega ) = K{\omega ^2}$$
D
$$A(\omega ) = C,\,\,\phi (\omega ) = K{\omega ^{ - 1}}$$
4
GATE ECE 2002
+1
-0.3
A linear phase channel with phase delay $${\tau _p}$$ and group delay $${\tau _g}$$ must have
A
$$\,{\tau _p} = {\tau _g} =$$ constant
B
$${\tau _p}\infty \,\,f\,and\,{\tau _g}\infty \,f$$
C
$${\tau _p}$$ = constant and $${\tau _g}\infty \,f$$
D
$${\tau _p}\infty \,f\,and\,\,{\tau _g}$$ =constant ($$f$$denotes frequency)
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Communications
Electromagnetics
General Aptitude
Engineering Mathematics
EXAM MAP
Joint Entrance Examination