1
GATE ECE 2016 Set 1
Numerical
+1
-0
A continuous-time sinusoid of frequency 33 Hz is multiplied with a periodic Dirac impulse train of frequency 46 Hz. The resulting signal is passed through an ideal analog low-pass filter with a cutoff frequency of 23Hz. The fundamental frequency (in Hz) of the output is _____________________.
Your input ____
2
GATE ECE 2014 Set 4
MCQ (Single Correct Answer)
+1
-0.3
A real - values signal x(t) limited to the frequency band $$\left| f \right| \le {W \over 2}$$ is passed through a linear time invariant system whose frequency response is
$$H(f) = \left\{ {\matrix{ {{e^{ - j4\pi f}},} & {\left| f \right| \le \,{W \over 2}} \cr {0,} & {\left| f \right| > \,{W \over 2}} \cr } } \right.$$
$$H(f) = \left\{ {\matrix{ {{e^{ - j4\pi f}},} & {\left| f \right| \le \,{W \over 2}} \cr {0,} & {\left| f \right| > \,{W \over 2}} \cr } } \right.$$
The output of the system is
3
GATE ECE 2013
MCQ (Single Correct Answer)
+1
-0.3
Assuming zero initial condition, the response y (t) of the system given below to a unit step input u(t) is


4
GATE ECE 2013
MCQ (Single Correct Answer)
+1
-0.3
Let g(t) = $${e^{ - \pi {t^2}}}$$, and h(t) is a filter matched to g(t). If g(t) is applied as input to h(t), then the Fourier transform of the output is
Questions Asked from Transmission of Signal Through Continuous Time LTI Systems (Marks 1)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series
Discrete Time Signal Fourier Series Fourier Transform
Discrete Time Signal Z Transform
Continuous Time Linear Invariant System
Transmission of Signal Through Continuous Time LTI Systems
Discrete Time Linear Time Invariant Systems
Sampling
Continuous Time Signal Laplace Transform
Discrete Fourier Transform and Fast Fourier Transform
Transmission of Signal Through Discrete Time Lti Systems
Miscellaneous
Fourier Transform
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics