1
GATE ECE 2006
MCQ (Single Correct Answer)
+1
-0.3
In the system shown below,
x(t) = (sint)u(t). In steady-state, the response y(t) will be GATE ECE 2006 Signals and Systems - Transmission of Signal Through Continuous Time LTI Systems Question 30 English
A
$${1 \over {\sqrt 2 }}\sin \left( {t - {\pi \over 4}} \right)$$
B
$${1 \over {\sqrt 2 }}\sin \left( {t + {\pi \over 4}} \right)$$
C
$${1 \over {\sqrt 2 }}{e^{ - t}}\sin (t)$$
D
$$\sin (t) - \cos (t)$$
2
GATE ECE 2006
MCQ (Single Correct Answer)
+1
-0.3
A low-pass filter having a frequency response $$H(j\omega )$$ = $$A(\omega ){e^{j\Phi (\omega )}}$$, does not product any phase distortion if
A
$$A(\omega ) = C{\omega ^2},\,\,\phi (\omega ) = K{\omega ^3}$$
B
$$A(\omega ) = C{\omega ^2},\,\,\phi (\omega ) = K\omega $$
C
$$A(\omega ) = C\omega ,\,\,\phi (\omega ) = K{\omega ^2}$$
D
$$A(\omega ) = C,\,\,\phi (\omega ) = K{\omega ^{ - 1}}$$
3
GATE ECE 2002
MCQ (Single Correct Answer)
+1
-0.3
A linear phase channel with phase delay $${\tau _p}$$ and group delay $${\tau _g}$$ must have
A
$$\,{\tau _p} = {\tau _g} = $$ constant
B
$${\tau _p}\infty \,\,f\,and\,{\tau _g}\infty \,f$$
C
$${\tau _p}$$ = constant and $${\tau _g}\infty \,f$$
D
$${\tau _p}\infty \,f\,and\,\,{\tau _g}$$ =constant ($$f$$denotes frequency)
4
GATE ECE 1999
MCQ (Single Correct Answer)
+1
-0.3
The input to a channel is a band pass signal. It is obtained by linearly modulating a sinusoidal carrier with a signal- tone signal. The output of the channel due to this input is given by y(t) = (1/100) cos$$(100t - {10^{ - 6}})\,$$ cos$$({10^6}t - 1.56)$$. The group delay $$({t_g})$$ and the phase delay $$({t_p})$$, in seconds, of the channel are
A
$${t_g} = {10^{ - 6}},\,{t_p} = 1.56$$
B
$${t_g} = 1.56,\,\,{t_p} = {10^{ - 6}}$$
C
$${t_g} = \,\,{10^{ - 8}},\,\,{t_p} = 1.56 \times {10^{ - 6}}$$
D
$${t_g} = {10^{ - 8}},\,{t_p} = 1.56$$
GATE ECE Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12