1
GATE ECE 2010
+1
-0.3
Consider the pulse shape s(t) as shown. The impulse response h(t) of the filter matched to this pulse is
A
B
C
D
2
GATE ECE 2010
+1
-0.3
A system with the transfer function $${{Y(s)} \over {X(s)}} = {s \over {s + p}}\,\,$$ has an output
$$y(t) = \cos \left( {2t - {\pi \over 3}} \right)\,$$ for the input signal
$$x(t) = p\cos \left( {2t - {\pi \over 2}} \right)$$. Then, the system parameter 'p' is
A
$$\sqrt 3$$
B
$$\,{2 \over {\sqrt 3 \,}}$$
C
1
D
$${{\sqrt 3 \,} \over 2}$$
3
GATE ECE 2006
+1
-0.3
In the system shown below,
x(t) = (sint)u(t). In steady-state, the response y(t) will be
A
$${1 \over {\sqrt 2 }}\sin \left( {t - {\pi \over 4}} \right)$$
B
$${1 \over {\sqrt 2 }}\sin \left( {t + {\pi \over 4}} \right)$$
C
$${1 \over {\sqrt 2 }}{e^{ - t}}\sin (t)$$
D
$$\sin (t) - \cos (t)$$
4
GATE ECE 2006
+1
-0.3
A low-pass filter having a frequency response $$H(j\omega )$$ = $$A(\omega ){e^{j\Phi (\omega )}}$$, does not product any phase distortion if
A
$$A(\omega ) = C{\omega ^2},\,\,\phi (\omega ) = K{\omega ^3}$$
B
$$A(\omega ) = C{\omega ^2},\,\,\phi (\omega ) = K\omega$$
C
$$A(\omega ) = C\omega ,\,\,\phi (\omega ) = K{\omega ^2}$$
D
$$A(\omega ) = C,\,\,\phi (\omega ) = K{\omega ^{ - 1}}$$
EXAM MAP
Medical
NEET