Let $\mathbb{R}$ denote the set of all real numbers. For a real number $x$, let [ x ] denote the greatest integer less than or equal to $x$. Let $n$ denote a natural number.
Match each entry in List-I to the correct entry in List-II and choose the correct option.
List–I | List–II |
---|---|
(P) The minimum value of $n$ for which the function $$ f(x)=\left[\frac{10 x^3-45 x^2+60 x+35}{n}\right] $$ is continuous on the interval $[1,2]$, is | (1) 8 |
(Q) The minimum value of $n$ for which $g(x)=\left(2 n^2-13 n-15\right)\left(x^3+3 x\right)$, $x \in \mathbb{R}$, is an increasing function on $\mathbb{R}$, is | (2) 9 |
(R) The smallest natural number $n$ which is greater than 5 , such that $x=3$ is a point of local minima of $$ h(x)=\left(x^2-9\right)^n\left(x^2+2 x+3\right) $$ is | (3) 5 |
(S) Number of $x_0 \in \mathbb{R}$ such that
$$ l(x)=\sum\limits_{k=0}^4\left(\sin |x-k|+\cos \left|x-k+\frac{1}{2}\right|\right) $$ $x \in \mathbb{R}$, is NOT differentiable at $x_0$, is |
(4) 6 |
(5) 10 |
Let $\vec{w} = \hat{i} + \hat{j} - 2\hat{k}$, and $\vec{u}$ and $\vec{v}$ be two vectors, such that $\vec{u} \times \vec{v} = \vec{w}$ and $\vec{v} \times \vec{w} = \vec{u}$. Let $\alpha, \beta, \gamma$, and $t$ be real numbers such that
$\vec{u} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k},\ \ \ - t \alpha + \beta + \gamma = 0,\ \ \ \alpha - t \beta + \gamma = 0,\ \ \ \alpha + \beta - t \gamma = 0.$
Match each entry in List-I to the correct entry in List-II and choose the correct option.
List – I | List – II |
---|---|
(P) $\lvert \vec{v} \rvert^2$ is equal to | (1) 0 |
(Q) If $\alpha = \sqrt{3}$, then $\gamma^2$ is equal to | (2) 1 |
(R) If $\alpha = \sqrt{3}$, then $(\beta + \gamma)^2$ is equal to | (3) 2 |
(S) If $\alpha = \sqrt{2}$, then $t + 3$ is equal to | (4) 3 |
(5) 5 |