1
JEE Advanced 2025 Paper 1 Online
Numerical
+4
-0
Change Language

For all x > 0, let y₁(x), y₂(x), and y₃(x) be the functions satisfying

$ \frac{dy_1}{dx} - (\sin x)^2 y_1 = 0, \quad y_1(1) = 5, $

$ \frac{dy_2}{dx} - (\cos x)^2 y_2 = 0, \quad y_2(1) = \frac{1}{3}, $

$ \frac{dy_3}{dx} - \frac{(2-x^3)}{x^3} y_3 = 0, \quad y_3(1) = \frac{3}{5e}, $

respectively. Then

$ \lim\limits_{x \to 0^+} \frac{y_1(x)y_2(x)y_3(x) + 2x}{e^{3x} \sin x} $

is equal to __________________.

Your input ____
2
JEE Advanced 2025 Paper 1 Online
MCQ (Single Correct Answer)
+4
-1
Change Language

Consider the following frequency distribution:

Value458961211
Frequency5$f_1$$f_2$2113

Suppose that the sum of the frequencies is 19 and the median of this frequency distribution is 6.

For the given frequency distribution, let $\alpha$ denote the mean deviation about the mean, $\beta$ denote the mean deviation about the median, and $\sigma^2$ denote the variance.

Match each entry in List-I to the correct entry in List-II and choose the correct option.

List – I List – II
(P) 7 f1 + 9 f2 is equal to (1) 146
(Q) 19 α is equal to (2) 47
(R) 19 β is equal to (3) 48
(S) 19 σ2 is equal to (4) 145
(5) 55
A

(P) → (5)    (Q) → (3)    (R) → (2)    (S) → (4)

B

(P) → (5)    (Q) → (2)    (R) → (3)    (S) → (1)

C

(P) → (5)    (Q) → (3)    (R) → (2)    (S) → (1)

D

(P) → (3)    (Q) → (2)    (R) → (5)    (S) → (4)

3
JEE Advanced 2025 Paper 1 Online
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $\mathbb{R}$ denote the set of all real numbers. For a real number $x$, let [ x ] denote the greatest integer less than or equal to $x$. Let $n$ denote a natural number.

Match each entry in List-I to the correct entry in List-II and choose the correct option.

List–I List–II
(P) The minimum value of $n$ for which the function $$ f(x)=\left[\frac{10 x^3-45 x^2+60 x+35}{n}\right] $$ is continuous on the interval $[1,2]$, is (1) 8
(Q) The minimum value of $n$ for which $g(x)=\left(2 n^2-13 n-15\right)\left(x^3+3 x\right)$, $x \in \mathbb{R}$, is an increasing function on $\mathbb{R}$, is (2) 9
(R) The smallest natural number $n$ which is greater than 5 , such that $x=3$ is a point of local minima of $$ h(x)=\left(x^2-9\right)^n\left(x^2+2 x+3\right) $$ is (3) 5
(S) Number of $x_0 \in \mathbb{R}$ such that

$$ l(x)=\sum\limits_{k=0}^4\left(\sin |x-k|+\cos \left|x-k+\frac{1}{2}\right|\right) $$

$x \in \mathbb{R}$, is NOT differentiable at $x_0$, is
(4) 6
(5) 10
A

(P) → (1)   (Q) → (3)   (R) → (2)   (S) → (5)

B

(P) → (2)   (Q) → (1)   (R) → (4)   (S) → (3)

C

(P) → (5)   (Q) → (1)   (R) → (4)   (S) → (3)

D

(P) → (2)   (Q) → (3)   (R) → (1)   (S) → (5)

4
JEE Advanced 2025 Paper 1 Online
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $\vec{w} = \hat{i} + \hat{j} - 2\hat{k}$, and $\vec{u}$ and $\vec{v}$ be two vectors, such that $\vec{u} \times \vec{v} = \vec{w}$ and $\vec{v} \times \vec{w} = \vec{u}$. Let $\alpha, \beta, \gamma$, and $t$ be real numbers such that

$\vec{u} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k},\ \ \ - t \alpha + \beta + \gamma = 0,\ \ \ \alpha - t \beta + \gamma = 0,\ \ \ \alpha + \beta - t \gamma = 0.$

Match each entry in List-I to the correct entry in List-II and choose the correct option.

List – I List – II
(P) $\lvert \vec{v} \rvert^2$ is equal to (1) 0
(Q) If $\alpha = \sqrt{3}$, then $\gamma^2$ is equal to (2) 1
(R) If $\alpha = \sqrt{3}$, then $(\beta + \gamma)^2$ is equal to (3) 2
(S) If $\alpha = \sqrt{2}$, then $t + 3$ is equal to (4) 3
(5) 5
A

(P) $\to$ (2)   (Q) $\to$ (1)   (R) $\to$ (4)   (S) $\to$ (5)

B

(P) $\to$ (2)   (Q) $\to$ (4)   (R) $\to$ (3)   (S) $\to$ (5)

C

(P) $\to$ (2)   (Q) $\to$ (1)   (R) $\to$ (4)   (S) $\to$ (3)

D

(P) $\to$ (5)   (Q) $\to$ (4)   (R) $\to$ (1)   (S) $\to$ (3)

JEE Advanced Papers
EXAM MAP