Let α and β be the real numbers such that
$ \lim\limits_{x \to 0} \frac{1}{x^3} \left( \frac{\alpha}{2} \int\limits_0^x \frac{1}{1-t^2} \, dt + \beta x \cos x \right) = 2. $
Then the value of α + β is ___________.
Let ℝ denote the set of all real numbers. Let f: ℝ → ℝ be a function such that f(x) > 0 for all x ∈ ℝ, and f(x+y) = f(x)f(y) for all x, y ∈ ℝ.
Let the real numbers a₁, a₂, ..., a₅₀ be in an arithmetic progression. If f(a₃₁) = 64f(a₂₅), and
$ \sum\limits_{i=1}^{50} f(a_i) = 3(2^{25}+1), $
then the value of
$ \sum\limits_{i=6}^{30} f(a_i) $
is ________________.
For all x > 0, let y₁(x), y₂(x), and y₃(x) be the functions satisfying
$ \frac{dy_1}{dx} - (\sin x)^2 y_1 = 0, \quad y_1(1) = 5, $
$ \frac{dy_2}{dx} - (\cos x)^2 y_2 = 0, \quad y_2(1) = \frac{1}{3}, $
$ \frac{dy_3}{dx} - \frac{(2-x^3)}{x^3} y_3 = 0, \quad y_3(1) = \frac{3}{5e}, $
respectively. Then
$ \lim\limits_{x \to 0^+} \frac{y_1(x)y_2(x)y_3(x) + 2x}{e^{3x} \sin x} $
is equal to __________________.
Consider the following frequency distribution:
Value | 4 | 5 | 8 | 9 | 6 | 12 | 11 |
---|---|---|---|---|---|---|---|
Frequency | 5 | $f_1$ | $f_2$ | 2 | 1 | 1 | 3 |
Suppose that the sum of the frequencies is 19 and the median of this frequency distribution is 6.
For the given frequency distribution, let $\alpha$ denote the mean deviation about the mean, $\beta$ denote the mean deviation about the median, and $\sigma^2$ denote the variance.
Match each entry in List-I to the correct entry in List-II and choose the correct option.
List – I | List – II |
---|---|
(P) 7 f1 + 9 f2 is equal to | (1) 146 |
(Q) 19 α is equal to | (2) 47 |
(R) 19 β is equal to | (3) 48 |
(S) 19 σ2 is equal to | (4) 145 |
(5) 55 |