Let $L_1$ be the line of intersection of the planes given by the equations
$2x + 3y + z = 4$ and $x + 2y + z = 5$.
Let $L_2$ be the line passing through the point $P(2, -1, 3)$ and parallel to $L_1$. Let $M$ denote the plane given by the equation
$2x + y - 2z = 6$.
Suppose that the line $L_2$ meets the plane $M$ at the point $Q$. Let $R$ be the foot of the perpendicular drawn from $P$ to the plane $M$.
Then which of the following statements is (are) TRUE?
Let ℕ denote the set of all natural numbers, and ℤ denote the set of all integers. Consider the functions f: ℕ → ℤ and g: ℤ → ℕ defined by
$$ f(n) = \begin{cases} \frac{(n + 1)}{2} & \text{if } n \text{ is odd,} \\ \frac{(4-n)}{2} & \text{if } n \text{ is even,} \end{cases} $$
and
$$ g(n) = \begin{cases} 3 + 2n & \text{if } n \ge 0 , \\ -2n & \text{if } n < 0 . \end{cases} $$
Define $$(g \circ f)(n) = g(f(n))$$ for all $n \in \mathbb{N}$, and $$(f \circ g)(n) = f(g(n))$$ for all $n \in \mathbb{Z}$.
Then which of the following statements is (are) TRUE?
Let ℝ denote the set of all real numbers. Let $z_1 = 1 + 2i$ and $z_2 = 3i$ be two complex numbers, where $i = \sqrt{-1}$. Let
$$S = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x + iy - z_1| = 2|x + iy - z_2| \}.$$
Then which of the following statements is (are) TRUE?
Let the set of all relations $R$ on the set $\{a, b, c, d, e, f\}$, such that $R$ is reflexive and symmetric, and $R$ contains exactly $10$ elements, be denoted by $\mathcal{S}$.
Then the number of elements in $\mathcal{S}$ is ________________.