An ideal gas of density $\rho=0.2 \mathrm{~kg} \mathrm{~m}^{-3}$ enters a chimney of height $h$ at the rate of $\alpha=$ $0.8 \mathrm{~kg} \mathrm{~s}^{-1}$ from its lower end, and escapes through the upper end as shown in the figure. The cross-sectional area of the lower end is $A_{1}=0.1 \mathrm{~m}^{2}$ and the upper end is $A_{2}=0.4 \mathrm{~m}^{2}$. The pressure and the temperature of the gas at the lower end are $600 \mathrm{~Pa}$ and $300 \mathrm{~K}$, respectively, while its temperature at the upper end is $150 \mathrm{~K}$. The chimney is heat insulated so that the gas undergoes adiabatic expansion. Take $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ and the ratio of specific heats of the gas $\gamma=2$. Ignore atmospheric pressure.

Which of the following statement(s) is(are) correct?

Three plane mirrors form an equilateral triangle with each side of length $L$. There is a small hole at a distance $l>0$ from one of the corners as shown in the figure. A ray of light is passed through the hole at an angle $\theta$ and can only come out through the same hole. The cross section of the mirror configuration and the ray of light lie on the same plane.

Which of the following statement(s) is(are) correct?

Six charges are placed around a regular hexagon of side length $a$ as shown in the figure. Five of them have charge $q$, and the remaining one has charge $x$. The perpendicular from each charge to the nearest hexagon side passes through the center 0 of the hexagon and is bisected by the side.

Which of the following statement(s) is(are) correct in SI units?

The binding energy of nucleons in a nucleus can be affected by the pairwise Coulomb repulsion. Assume that all nucleons are uniformly distributed inside the nucleus. Let the binding energy of a proton be $E_{b}^{p}$ and the binding energy of a neutron be $E_{b}^{n}$ in the nucleus.

Which of the following statement(s) is(are) correct?