A solid sphere of mass $1 \mathrm{~kg}$ and radius $1 \mathrm{~m}$ rolls without slipping on a fixed inclined plane with an angle of inclination $\theta=30^{\circ}$ from the horizontal. Two forces of magnitude $1 \mathrm{~N}$ each, parallel to the incline, act on the sphere, both at distance $r=0.5 \mathrm{~m}$ from the center of the sphere, as shown in the figure. The acceleration of the sphere down the plane is _________ $m \,s^{-2} .\left(\right.$ Take $g=10\, m s^{-2}$)
A projectile is fired from horizontal ground with speed $v$ and projection angle $\theta$. When the acceleration due to gravity is $g$, the range of the projectile is $d$. If at the highest point in its trajectory, the projectile enters a different region where the effective acceleration due to gravity is $g^{\prime}=\frac{g}{0.81}$, then the new range is $d^{\prime}=n d$. The value of $n$ is ___________ .