1
JEE Advanced 2022 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

Two players, $$P_{1}$$ and $$P_{2}$$, play a game against each other. In every round of the game, each player rolls a fair die once, where the six faces of the die have six distinct numbers. Let $$x$$ and $$y$$ denote the readings on the die rolled by $$P_{1}$$ and $$P_{2}$$, respectively. If $$x>y$$, then $$P_{1}$$ scores 5 points and $$P_{2}$$ scores 0 point. If $$x=y$$, then each player scores 2 points. If $$x < y$$, then $$P_{1}$$ scores 0 point and $$P_{2}$$ scores 5 points. Let $$X_{i}$$ and $$Y_{i}$$ be the total scores of $$P_{1}$$ and $$P_{2}$$, respectively, after playing the $$i^{\text {th }}$$ round.

List-I List-II
(I) Probability of $$\left(X_{2} \geq Y_{2}\right)$$ is (P) $$\frac{3}{8}$$
(II) Probability of $$\left(X_{2}>Y_{2}\right)$$ is (Q) $$\frac{11}{16}$$
(III) Probability of $$\left(X_{3}=Y_{3}\right)$$ is (R) $$\frac{5}{16}$$
(IV) Probability of $$\left(X_{3}>Y_{3}\right)$$ is (S) $$\frac{355}{864}$$
(T) $$\frac{77}{432}$$

The correct option is:

A
(I) $$\rightarrow$$ (Q); (II) $$\rightarrow$$ (R); (III) $$\rightarrow$$ (T); (IV) $$\rightarrow(S)$$
B
(I) $$\rightarrow$$ (Q); (II) $$\rightarrow$$ (R); (III) $$\rightarrow$$ (T); (IV) $$\rightarrow$$ (T)
C
(I) $$\rightarrow$$ (P); (II) $$\rightarrow$$ (R); (III) $$\rightarrow(\mathrm{Q}) ;(\mathrm{IV}) \rightarrow(\mathrm{S})$$
D
(I) $$\rightarrow$$ (P); (II) $$\rightarrow$$ (R); (III) $$\rightarrow$$ (Q); (IV) $$\rightarrow$$ (T)
2
JEE Advanced 2022 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

Let $$p, q, r$$ be nonzero real numbers that are, respectively, the $$10^{\text {th }}, 100^{\text {th }}$$ and $$1000^{\text {th }}$$ terms of a harmonic progression. Consider the system of linear equations

$$$ \begin{gathered} x+y+z=1 \\ 10 x+100 y+1000 z=0 \\ q r x+p r y+p q z=0 \end{gathered} $$$

List-I List-II
(I) If $$\frac{q}{r}=10$$, then the system of linear equations has (P) $$x=0, \quad y=\frac{10}{9}, z=-\frac{1}{9}$$ as a solution
(II) If $$\frac{p}{r} \neq 100$$, then the system of linear equations has (Q) $$x=\frac{10}{9}, y=-\frac{1}{9}, z=0$$ as a solution
(III) If $$\frac{p}{q} \neq 10$$, then the system of linear equations has (R) infinitely many solutions
(IV) If $$\frac{p}{q}=10$$, then the system of linear equations has (S) no solution
(T) at least one solution

The correct option is:

A
(I) $$\rightarrow$$ (T); (II) $$\rightarrow$$ (R); (III) $$\rightarrow$$ (S); (IV) $$\rightarrow$$ (T)
B
(I) $$\rightarrow$$ (Q); (II) $$\rightarrow$$ (S); (III) $$\rightarrow$$ (S); (IV) $$\rightarrow$$ (R)
C
(I) $$\rightarrow(\mathrm{Q})$$; (II) $$\rightarrow$$ (R); (III) $$\rightarrow(\mathrm{P})$$; (IV) $$\rightarrow$$ (R)
D
(I) $$\rightarrow$$ (T); (II) $$\rightarrow$$ (S); (III) $$\rightarrow$$ (P); (IV) $$\rightarrow$$ (T)
3
JEE Advanced 2022 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

Consider the ellipse

$$$ \frac{x^{2}}{4}+\frac{y^{2}}{3}=1 $$$

Let $H(\alpha, 0), 0<\alpha<2$, be a point. A straight line drawn through $H$ parallel to the $y$-axis crosses the ellipse and its auxiliary circle at points $E$ and $F$ respectively, in the first quadrant. The tangent to the ellipse at the point $E$ intersects the positive $x$-axis at a point $G$. Suppose the straight line joining $F$ and the origin makes an angle $\phi$ with the positive $x$-axis.

List-I List-II
(I) If $\phi=\frac{\pi}{4}$, then the area of the triangle $F G H$ is (P) $\frac{(\sqrt{3}-1)^{4}}{8}$
(II) If $\phi=\frac{\pi}{3}$, then the area of the triangle $F G H$ is (Q) 1
(III) If $\phi=\frac{\pi}{6}$, then the area of the triangle $F G H$ is (R) $\frac{3}{4}$
(IV) If $\phi=\frac{\pi}{12}$, then the area of the triangle $F G H$ is (S) $\frac{1}{2 \sqrt{3}}$
(T) $\frac{3 \sqrt{3}}{2}$

The correct option is:

A
$(\mathrm{I}) \rightarrow(\mathrm{R}) ;(\mathrm{II}) \rightarrow(\mathrm{S}) ;(\mathrm{III}) \rightarrow(\mathrm{Q}) ;(\mathrm{IV}) \rightarrow(\mathrm{P})$
B
(I) $\rightarrow$ (R); (II) $\rightarrow(\mathrm{T}) ;(\mathrm{III}) \rightarrow(\mathrm{S}) ;(\mathrm{IV}) \rightarrow(\mathrm{P})$
C
(I) $\rightarrow(\mathrm{Q}) ;(\mathrm{II}) \rightarrow(\mathrm{T}) ;(\mathrm{III}) \rightarrow(\mathrm{S}) ;(\mathrm{IV}) \rightarrow(\mathrm{P})$
D
(I) $\rightarrow$ (Q); (II) $\rightarrow$ (S); (III) $\rightarrow$ (Q); (IV) $\rightarrow$ (P)
4
JEE Advanced 2022 Paper 1 Online
Numerical
+3
-0
Change Language

Two spherical stars $A$ and $B$ have densities $\rho_{A}$ and $\rho_{B}$, respectively. $A$ and $B$ have the same radius, and their masses $M_{A}$ and $M_{B}$ are related by $M_{B}=2 M_{A}$. Due to an interaction process, star $A$ loses some of its mass, so that its radius is halved, while its spherical shape is retained, and its density remains $\rho_{A}$. The entire mass lost by $A$ is deposited as a thick spherical shell on $B$ with the density of the shell being $\rho_{A}$. If $v_{A}$ and $v_{B}$ are the escape velocities from $A$ and $B$ after the interaction process, the ratio $\frac{v_{B}}{v_{A}}=\sqrt{\frac{10 n}{15^{1 / 3}}}$. The value of $n$ is __________ .

Your input ____
JEE Advanced Papers
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12