Two spherical stars $A$ and $B$ have densities $\rho_{A}$ and $\rho_{B}$, respectively. $A$ and $B$ have the same radius, and their masses $M_{A}$ and $M_{B}$ are related by $M_{B}=2 M_{A}$. Due to an interaction process, star $A$ loses some of its mass, so that its radius is halved, while its spherical shape is retained, and its density remains $\rho_{A}$. The entire mass lost by $A$ is deposited as a thick spherical shell on $B$ with the density of the shell being $\rho_{A}$. If $v_{A}$ and $v_{B}$ are the escape velocities from $A$ and $B$ after the interaction process, the ratio $\frac{v_{B}}{v_{A}}=\sqrt{\frac{10 n}{15^{1 / 3}}}$. The value of $n$ is __________ .
In the following circuit $C_{1}=12 \mu F, C_{2}=C_{3}=4 \mu F$ and $C_{4}=C_{5}=2 \mu F$. The charge stored in $C_{3}$ is ____________ $\mu C$.
A rod of length $2 \mathrm{~cm}$ makes an angle $\frac{2 \pi}{3} \mathrm{rad}$ with the principal axis of a thin convex lens. The lens has a focal length of $10 \mathrm{~cm}$ and is placed at a distance of $\frac{40}{3} \mathrm{~cm}$ from the object as shown in the figure. The height of the image is $\frac{30 \sqrt{3}}{13} \mathrm{~cm}$ and the angle made by it with respect to the principal axis is $\alpha$ rad. The value of $\alpha$ is $\frac{\pi}{n} r a d$, where $n$ is __________ .