1
JEE Advanced 2022 Paper 1 Online
MCQ (More than One Correct Answer)
+4
-2
Change Language

Let $$|M|$$ denote the determinant of a square matrix $$M$$. Let $$g:\left[0, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$$ be the function defined by

$$ g(\theta)=\sqrt{f(\theta)-1}+\sqrt{f\left(\frac{\pi}{2}-\theta\right)-1} $$

where

$$ f(\theta)=\frac{1}{2}\left|\begin{array}{ccc} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{array}\right|+\left|\begin{array}{ccc} \sin \pi & \cos \left(\theta+\frac{\pi}{4}\right) & \tan \left(\theta-\frac{\pi}{4}\right) \\ \sin \left(\theta-\frac{\pi}{4}\right) & -\cos \frac{\pi}{2} & \log _{e}\left(\frac{4}{\pi}\right) \\ \cot \left(\theta+\frac{\pi}{4}\right) & \log _{e}\left(\frac{\pi}{4}\right) & \tan \pi \end{array}\right| . $$

Let $$p(x)$$ be a quadratic polynomial whose roots are the maximum and minimum values of the function $$g(\theta)$$, and $$p(2)=2-\sqrt{2}$$. Then, which of the following is/are TRUE ?

A
$$p\left(\frac{3+\sqrt{2}}{4}\right)<0$$
B
$$p\left(\frac{1+3 \sqrt{2}}{4}\right)>0$$
C
$$p\left(\frac{5 \sqrt{2}-1}{4}\right)>0$$
D
$$p\left(\frac{5-\sqrt{2}}{4}\right)<0$$
2
JEE Advanced 2022 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

Consider the following lists :

List-I List-II
(I) $$\left\{x \in\left[-\frac{2 \pi}{3}, \frac{2 \pi}{3}\right]: \cos x+\sin x=1\right\}$$ (P) has two elements
(II) $$\left\{x \in\left[-\frac{5 \pi}{18}, \frac{5 \pi}{18}\right]: \sqrt{3} \tan 3 x=1\right\}$$ (Q) has three elements
(III) $$\left\{x \in\left[-\frac{6 \pi}{5}, \frac{6 \pi}{5}\right]: 2 \cos (2 x)=\sqrt{3}\right\}$$ (R) has four elements
(IV) $$\left\{x \in\left[-\frac{7 \pi}{4}, \frac{7 \pi}{4}\right]: \sin x-\cos x=1\right\}$$ (S) has five elements
(T) has six elements

The correct option is:

A
(I) $$\rightarrow(\mathrm{P})$$; (II) $$\rightarrow(\mathrm{S})$$; (III) $$\rightarrow(\mathrm{P})$$; (IV) $$\rightarrow(\mathrm{S})$$
B
(I) $$\rightarrow$$ (P); (II) $$\rightarrow$$ (P); (III) $$\rightarrow$$ (T); (IV) $$\rightarrow$$ (R)
C
(I) $$\rightarrow$$ (Q); (II) $$\rightarrow(\mathrm{P})$$; (III) $$\rightarrow$$ (T); (IV) $$\rightarrow$$ (S)
D
(I) $$\rightarrow(\mathrm{Q})$$; (II) $$\rightarrow(\mathrm{S}) ;$$ (III) $$\rightarrow(\mathrm{P})$$; (IV) $$\rightarrow(\mathrm{R})$$
3
JEE Advanced 2022 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

Two players, $$P_{1}$$ and $$P_{2}$$, play a game against each other. In every round of the game, each player rolls a fair die once, where the six faces of the die have six distinct numbers. Let $$x$$ and $$y$$ denote the readings on the die rolled by $$P_{1}$$ and $$P_{2}$$, respectively. If $$x>y$$, then $$P_{1}$$ scores 5 points and $$P_{2}$$ scores 0 point. If $$x=y$$, then each player scores 2 points. If $$x < y$$, then $$P_{1}$$ scores 0 point and $$P_{2}$$ scores 5 points. Let $$X_{i}$$ and $$Y_{i}$$ be the total scores of $$P_{1}$$ and $$P_{2}$$, respectively, after playing the $$i^{\text {th }}$$ round.

List-I List-II
(I) Probability of $$\left(X_{2} \geq Y_{2}\right)$$ is (P) $$\frac{3}{8}$$
(II) Probability of $$\left(X_{2}>Y_{2}\right)$$ is (Q) $$\frac{11}{16}$$
(III) Probability of $$\left(X_{3}=Y_{3}\right)$$ is (R) $$\frac{5}{16}$$
(IV) Probability of $$\left(X_{3}>Y_{3}\right)$$ is (S) $$\frac{355}{864}$$
(T) $$\frac{77}{432}$$

The correct option is:

A
(I) $$\rightarrow$$ (Q); (II) $$\rightarrow$$ (R); (III) $$\rightarrow$$ (T); (IV) $$\rightarrow(S)$$
B
(I) $$\rightarrow$$ (Q); (II) $$\rightarrow$$ (R); (III) $$\rightarrow$$ (T); (IV) $$\rightarrow$$ (T)
C
(I) $$\rightarrow$$ (P); (II) $$\rightarrow$$ (R); (III) $$\rightarrow(\mathrm{Q}) ;(\mathrm{IV}) \rightarrow(\mathrm{S})$$
D
(I) $$\rightarrow$$ (P); (II) $$\rightarrow$$ (R); (III) $$\rightarrow$$ (Q); (IV) $$\rightarrow$$ (T)
4
JEE Advanced 2022 Paper 1 Online
MCQ (Single Correct Answer)
+3
-1
Change Language

Let $$p, q, r$$ be nonzero real numbers that are, respectively, the $$10^{\text {th }}, 100^{\text {th }}$$ and $$1000^{\text {th }}$$ terms of a harmonic progression. Consider the system of linear equations

$$$ \begin{gathered} x+y+z=1 \\ 10 x+100 y+1000 z=0 \\ q r x+p r y+p q z=0 \end{gathered} $$$

List-I List-II
(I) If $$\frac{q}{r}=10$$, then the system of linear equations has (P) $$x=0, \quad y=\frac{10}{9}, z=-\frac{1}{9}$$ as a solution
(II) If $$\frac{p}{r} \neq 100$$, then the system of linear equations has (Q) $$x=\frac{10}{9}, y=-\frac{1}{9}, z=0$$ as a solution
(III) If $$\frac{p}{q} \neq 10$$, then the system of linear equations has (R) infinitely many solutions
(IV) If $$\frac{p}{q}=10$$, then the system of linear equations has (S) no solution
(T) at least one solution

The correct option is:

A
(I) $$\rightarrow$$ (T); (II) $$\rightarrow$$ (R); (III) $$\rightarrow$$ (S); (IV) $$\rightarrow$$ (T)
B
(I) $$\rightarrow$$ (Q); (II) $$\rightarrow$$ (S); (III) $$\rightarrow$$ (S); (IV) $$\rightarrow$$ (R)
C
(I) $$\rightarrow(\mathrm{Q})$$; (II) $$\rightarrow$$ (R); (III) $$\rightarrow(\mathrm{P})$$; (IV) $$\rightarrow$$ (R)
D
(I) $$\rightarrow$$ (T); (II) $$\rightarrow$$ (S); (III) $$\rightarrow$$ (P); (IV) $$\rightarrow$$ (T)
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12