1
JEE Advanced 2022 Paper 1 Online
Numerical
+3
-0

A rod of length $2 \mathrm{~cm}$ makes an angle $\frac{2 \pi}{3} \mathrm{rad}$ with the principal axis of a thin convex lens. The lens has a focal length of $10 \mathrm{~cm}$ and is placed at a distance of $\frac{40}{3} \mathrm{~cm}$ from the object as shown in the figure. The height of the image is $\frac{30 \sqrt{3}}{13} \mathrm{~cm}$ and the angle made by it with respect to the principal axis is $\alpha$ rad. The value of $\alpha$ is $\frac{\pi}{n} r a d$, where $n$ is __________ .

2
JEE Advanced 2022 Paper 1 Online
Numerical
+3
-0
At time $t=0$, a disk of radius $1 \mathrm{~m}$ starts to roll without slipping on a horizontal plane with an angular acceleration of $\alpha=\frac{2}{3} \mathrm{rad} \,\mathrm{s}^{-2}$. A small stone is stuck to the disk. At $t=0$, it is at the contact point of the disk and the plane. Later, at time $t=\sqrt{\pi} \,s$, the stone detaches itself and flies off tangentially from the disk. The maximum height (in $m$ ) reached by the stone measured from the plane is $\frac{1}{2}+\frac{x}{10}$. The value of $x$ is ____________ , [Take $g=10 \mathrm{~m} \mathrm{~s}^{-2}$.]
3
JEE Advanced 2022 Paper 1 Online
Numerical
+3
-0

A solid sphere of mass $1 \mathrm{~kg}$ and radius $1 \mathrm{~m}$ rolls without slipping on a fixed inclined plane with an angle of inclination $\theta=30^{\circ}$ from the horizontal. Two forces of magnitude $1 \mathrm{~N}$ each, parallel to the incline, act on the sphere, both at distance $r=0.5 \mathrm{~m}$ from the center of the sphere, as shown in the figure. The acceleration of the sphere down the plane is _________ $m \,s^{-2} .\left(\right.$ Take $g=10\, m s^{-2}$)

4
JEE Advanced 2022 Paper 1 Online
Numerical
+3
-0
Consider an LC circuit, with inductance $L=0.1 \,\mathrm{H}$ and capacitance $C=10^{-3} \mathrm{~F}$, kept on a plane. The area of the circuit is $1 \mathrm{~m}^{2}$. It is placed in a constant magnetic field of strength $B_{0}$ which is perpendicular to the plane of the circuit. At time $t=0$, the magnetic field strength starts increasing linearly as $B=B_{0}+\beta t$ with $\beta=0.04 \,\mathrm{T\,s}^{-1}$. The maximum magnitude of the current in the circuit is _________ $m A$.