1
JEE Advanced 2021 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Let $${\psi _1}:[0,\infty ) \to R$$, $${\psi _2}:[0,\infty ) \to R$$, f : (0, $$\infty$$) $$\to$$ R and g : [0, $$\infty$$) $$\to$$ R be functions such that f(0) = g(0) = 0,
$${\psi _1}(x) = {e^{ - x}} + x,x \ge 0$$,
$${\psi _2}(x) = {x^2} - 2x - 2{e^{ - x}} + 2,x \ge 0$$,
$$f(x) = \int_{ - x}^x {(|t| - {t^2}){e^{ - {t^2}}}dt,x > 0} $$ and
$$g(x) = \int_0^{{x^2}} {\sqrt t {e^{ - t}}dt,x > 0} $$.
$${\psi _1}(x) = {e^{ - x}} + x,x \ge 0$$,
$${\psi _2}(x) = {x^2} - 2x - 2{e^{ - x}} + 2,x \ge 0$$,
$$f(x) = \int_{ - x}^x {(|t| - {t^2}){e^{ - {t^2}}}dt,x > 0} $$ and
$$g(x) = \int_0^{{x^2}} {\sqrt t {e^{ - t}}dt,x > 0} $$.
Which of the following statements is TRUE?
2
JEE Advanced 2021 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Let $${\psi _1}:[0,\infty ) \to R$$, $${\psi _2}:[0,\infty ) \to R$$, f : (0, $$\infty$$) $$\to$$ R and g : [0, $$\infty$$) $$\to$$ R be functions such that f(0) = g(0) = 0,
$${\psi _1}(x) = {e^{ - x}} + x,x \ge 0$$,
$${\psi _2}(x) = {x^2} - 2x - 2{e^{ - x}} + 2,x \ge 0$$,
$$f(x) = \int_{ - x}^x {(|t| - {t^2}){e^{ - {t^2}}}dt,x > 0} $$ and
$$g(x) = \int_0^{{x^2}} {\sqrt t {e^{ - t}}dt,x > 0} $$.
$${\psi _1}(x) = {e^{ - x}} + x,x \ge 0$$,
$${\psi _2}(x) = {x^2} - 2x - 2{e^{ - x}} + 2,x \ge 0$$,
$$f(x) = \int_{ - x}^x {(|t| - {t^2}){e^{ - {t^2}}}dt,x > 0} $$ and
$$g(x) = \int_0^{{x^2}} {\sqrt t {e^{ - t}}dt,x > 0} $$.
Which of the following statements is TRUE?
3
JEE Advanced 2021 Paper 2 Online
Numerical
+4
-0
A number of chosen at random from the set {1, 2, 3, ....., 2000}. Let p be the probability that the chosen number is a multiple of 3 or a multiple of 7. Then the value of 500p is __________.
Your input ____
4
JEE Advanced 2021 Paper 2 Online
Numerical
+4
-0
Let E be the ellipse $${{{x^2}} \over {16}} + {{{y^2}} \over 9} = 1$$. For any three distinct points P, Q and Q' on E, let M(P, Q) be the mid-point of the line segment joining P and Q, and M(P, Q') be the mid-point of the line segment joining P and Q'. Then the maximum possible value of the distance between M(P, Q) and M(P, Q'), as P, Q and Q' vary on E, is _______.
Your input ____
Paper analysis
Total Questions
Chemistry
19
Mathematics
19
Physics
19
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978