1
JEE Advanced 2021 Paper 2 Online
Numerical
+2
-0
Change Language
A pendulum consists of a bob of mass m = 0.1 kg and a massless inextensible string of length L = 1.0 m. It is suspended from a fixed point at height H = 0.9 m above a frictionless horizontal floor. Initially, the bob of the pendulum is lying on the floor at rest vertically below the point of suspension. A horizontal impulse P = 0.2 kg-m/s is imparted to the bob at some instant. After the bob slides for some distance, the string becomes taut and the bob lifts off the floor. The magnitude of the angular momentum of the pendulum about the point of suspension just before the bob lifts off is J kg-m2/s. The kinetic energy of the pendulum just after the lift-off is K Joules.

The value of K is ___________.
Your input ____
2
JEE Advanced 2021 Paper 2 Online
Numerical
+2
-0
Change Language
In a circuit, a metal filament lamp is connected in series with a capacitor of capacitance C $$\mu$$F across a 200 V, 50 Hz supply. The power consumed by the lamp is 500 W while the voltage drop across it is 100 V. Assume that there is no inductive load in the circuit. Take rms values of the voltages. The magnitude of the phase-angle (in degrees) between the current and the supply voltage is $$\varphi $$. Assume, $$\pi$$$$\sqrt 3 $$ $$ \approx $$ 5.

The value of C is ____________.
Your input ____
3
JEE Advanced 2021 Paper 2 Online
Numerical
+2
-0
Change Language
In a circuit, a metal filament lamp is connected in series with a capacitor of capacitance C $$\mu$$F across a 200 V, 50 Hz supply. The power consumed by the lamp is 500 W while the voltage drop across it is 100 V. Assume that there is no inductive load in the circuit. Take rms values of the voltages. The magnitude of the phase-angle (in degrees) between the current and the supply voltage is $$\varphi $$. Assume, $$\pi$$$$\sqrt 3 $$ $$ \approx $$ 5.

The value of $$\varphi$$ is ____________.
Your input ____
4
JEE Advanced 2021 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
A special metal S conducts electricity without any resistance. A closed wire loop, made of S, does not allow any change in flux through itself by inducing a suitable current to generate a compensating flux. The induced current in the loop cannot decay due to its zero resistance. This current gives rise to a magnetic moment which in turn repels the source of magnetic field or flux. Consider such a loop, of radius a, with its center at the origin. A magnetic dipole of moment m is brought along the axis of this loop from infinity to a point at distance r (>> a) from the center of the loop with its north pole always facing the loop, as shown in the figure below.

The magnitude of magnetic field of a dipole m, at a point on its axis at distance r, is $${{{\mu _0}} \over {2\pi }}{m \over {{r^3}}}$$, where $$\mu$$0 is the permeability of free space. The magnitude of the force between two magnetic dipoles with moments, m1 and m2, separated by a distance r on the common axis, with their north poles facing each other, is $${{k{m_1}{m_2}} \over {{r^4}}}$$, where k is a constant of appropriate dimensions. The direction of this force is along the line joining the two dipoles.

JEE Advanced 2021 Paper 2 Online Physics - Magnetism Question 31 English Comprehension
When the dipole m is placed at a distance r from the center of the loop (as shown in the figure), the current induced in the loop will be proportional to
A
m/r3
B
m2/r2
C
m/r2
D
m2/r
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12