1
JEE Advanced 2021 Paper 2 Online
Numerical
+2
-0
Change Language
In a circuit, a metal filament lamp is connected in series with a capacitor of capacitance C $$\mu$$F across a 200 V, 50 Hz supply. The power consumed by the lamp is 500 W while the voltage drop across it is 100 V. Assume that there is no inductive load in the circuit. Take rms values of the voltages. The magnitude of the phase-angle (in degrees) between the current and the supply voltage is $$\varphi $$. Assume, $$\pi$$$$\sqrt 3 $$ $$ \approx $$ 5.

The value of C is ____________.
Your input ____
2
JEE Advanced 2021 Paper 2 Online
Numerical
+2
-0
Change Language
In a circuit, a metal filament lamp is connected in series with a capacitor of capacitance C $$\mu$$F across a 200 V, 50 Hz supply. The power consumed by the lamp is 500 W while the voltage drop across it is 100 V. Assume that there is no inductive load in the circuit. Take rms values of the voltages. The magnitude of the phase-angle (in degrees) between the current and the supply voltage is $$\varphi $$. Assume, $$\pi$$$$\sqrt 3 $$ $$ \approx $$ 5.

The value of $$\varphi$$ is ____________.
Your input ____
3
JEE Advanced 2021 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
A special metal S conducts electricity without any resistance. A closed wire loop, made of S, does not allow any change in flux through itself by inducing a suitable current to generate a compensating flux. The induced current in the loop cannot decay due to its zero resistance. This current gives rise to a magnetic moment which in turn repels the source of magnetic field or flux. Consider such a loop, of radius a, with its center at the origin. A magnetic dipole of moment m is brought along the axis of this loop from infinity to a point at distance r (>> a) from the center of the loop with its north pole always facing the loop, as shown in the figure below.

The magnitude of magnetic field of a dipole m, at a point on its axis at distance r, is $${{{\mu _0}} \over {2\pi }}{m \over {{r^3}}}$$, where $$\mu$$0 is the permeability of free space. The magnitude of the force between two magnetic dipoles with moments, m1 and m2, separated by a distance r on the common axis, with their north poles facing each other, is $${{k{m_1}{m_2}} \over {{r^4}}}$$, where k is a constant of appropriate dimensions. The direction of this force is along the line joining the two dipoles.

JEE Advanced 2021 Paper 2 Online Physics - Magnetism Question 28 English Comprehension
When the dipole m is placed at a distance r from the center of the loop (as shown in the figure), the current induced in the loop will be proportional to
A
m/r3
B
m2/r2
C
m/r2
D
m2/r
4
JEE Advanced 2021 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
A special metal S conducts electricity without any resistance. A closed wire loop, made of S, does not allow any change in flux through itself by inducing a suitable current to generate a compensating flux. The induced current in the loop cannot decay due to its zero resistance. This current gives rise to a magnetic moment which in turn repels the source of magnetic field or flux. Consider such a loop, of radius a, with its center at the origin. A magnetic dipole of moment m is brought along the axis of this loop from infinity to a point at distance r (>> a) from the center of the loop with its north pole always facing the loop, as shown in the figure below.

The magnitude of magnetic field of a dipole m, at a point on its axis at distance r, is $${{{\mu _0}} \over {2\pi }}{m \over {{r^3}}}$$, where $$\mu$$0 is the permeability of free space. The magnitude of the force between two magnetic dipoles with moments, m1 and m2, separated by a distance r on the common axis, with their north poles facing each other, is $${{k{m_1}{m_2}} \over {{r^4}}}$$, where k is a constant of appropriate dimensions. The direction of this force is along the line joining the two dipoles.

JEE Advanced 2021 Paper 2 Online Physics - Magnetism Question 27 English Comprehension
The work done in bringing the dipole from infinity to a distance r from the center of the loop by the given process is proportional to
A
m/r5
B
m2/r5
C
m2/r6
D
m2/r7
JEE Advanced Papers
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12