1
JEE Advanced 2021 Paper 2 Online
Numerical
+2
-0
Change Language
Let $${g_i}:\left[ {{\pi \over 8},{{3\pi } \over 8}} \right] \to R,i = 1,2$$, and $$f:\left[ {{\pi \over 8},{{3\pi } \over 8}} \right] \to R$$ be functions such that $${g_1}(x) = 1,{g_2}(x) = |4x - \pi |$$ and $$f(x) = {\sin ^2}x$$, for all $$x \in \left[ {{\pi \over 8},{{3\pi } \over 8}} \right]$$. Define $${S_i} = \int\limits_{{\pi \over 8}}^{{{3\pi } \over 8}} {f(x).{g_i}(x)dx} $$, i = 1, 2

The value of $${{48{S_2}} \over {{\pi ^2}}}$$ is ___________.
Your input ____
2
JEE Advanced 2021 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Let $$M = \{ (x,y) \in R \times R:{x^2} + {y^2} \le {r^2}\} $$, where r > 0. Consider the geometric progression $${a_n} = {1 \over {{2^{n - 1}}}}$$, n = 1, 2, 3, ...... . Let S0 = 0 and for n $$\ge$$ 1, let Sn denote the sum of the first n terms of this progression. For n $$\ge$$ 1, let Cn denote the circle with center (Sn$$-$$1, 0) and radius an, and Dn denote the circle with center (Sn$$-$$1, Sn$$-$$1) and radius an.
Consider M with $$r = {{1025} \over {513}}$$. Let k be the number of all those circles Cn that are inside M. Let l be the maximum possible number of circles among these k circles such that no two circles intersect. Then
A
k + 2l = 22
B
2k + l = 26
C
2k + 3l = 34
D
3k + 2l = 40
3
JEE Advanced 2021 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Let $$M = \{ (x,y) \in R \times R:{x^2} + {y^2} \le {r^2}\} $$, where r > 0. Consider the geometric progression $${a_n} = {1 \over {{2^{n - 1}}}}$$, n = 1, 2, 3, ...... . Let S0 = 0 and for n $$\ge$$ 1, let Sn denote the sum of the first n terms of this progression. For n $$\ge$$ 1, let Cn denote the circle with center (Sn$$-$$1, 0) and radius an, and Dn denote the circle with center (Sn$$-$$1, Sn$$-$$1) and radius an.
Consider M with $$r = {{({2^{199}} - 1)\sqrt 2 } \over {{2^{198}}}}$$. The number of all those circles Dn that are inside M is
A
198
B
199
C
200
D
201
4
JEE Advanced 2021 Paper 2 Online
MCQ (Single Correct Answer)
+3
-1
Change Language
Let $${\psi _1}:[0,\infty ) \to R$$, $${\psi _2}:[0,\infty ) \to R$$, f : (0, $$\infty$$) $$\to$$ R and g : [0, $$\infty$$) $$\to$$ R be functions such that f(0) = g(0) = 0,

$${\psi _1}(x) = {e^{ - x}} + x,x \ge 0$$,

$${\psi _2}(x) = {x^2} - 2x - 2{e^{ - x}} + 2,x \ge 0$$,

$$f(x) = \int_{ - x}^x {(|t| - {t^2}){e^{ - {t^2}}}dt,x > 0} $$ and

$$g(x) = \int_0^{{x^2}} {\sqrt t {e^{ - t}}dt,x > 0} $$.
Which of the following statements is TRUE?
A
$$f(\sqrt {\ln 3} ) + g(\sqrt {\ln 3} ) = {1 \over 3}$$
B
For every x > 1, there exists an $$\alpha$$ $$\in$$ (1, x) such that $${\psi _1}(x) = 1 + \alpha x$$
C
For every x > 0, there exists a $$\beta$$ $$\in$$ (0, x) such that $${\psi _2}(x) = 2x({\psi _1}(\beta ) - 1)$$
D
f is an increasing function on the interval $$\left[ {0,{3 \over 2}} \right]$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12