1
JEE Advanced 2017 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
If $$f(x) = \left| {\matrix{ {\cos 2x} & {\cos 2x} & {\sin 2x} \cr { - \cos x} & {\cos x} & { - \sin x} \cr {\sin x} & {\sin x} & {\cos x} \cr } } \right|$$,

then
A
f(x) attains its minimum at x = 0
B
f(x) attains its maximum at x = 0
C
f'(x) = 0 at more than three points in ($$-$$$$\pi $$, $$\pi $$)
D
f'(x) = 0 at exactly three points in ($$-$$$$\pi $$, $$\pi $$)
2
JEE Advanced 2017 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0
Let O be the origin and $$\overrightarrow{OX}$$, $$\overrightarrow{OY}$$, $$\overrightarrow{OZ}$$ be three unit vectors in the directions of the sides $$\overrightarrow{QR}$$, $$\overrightarrow{RP}$$, $$\overrightarrow{PQ}$$ respectively, of a triangle PQR.
If the triangle PQR varies, then the minimum value of cos(P + Q) + cos(Q + R) + cos(R + P) is
A
$$ - {3 \over 2}$$
B
$${3 \over 2}$$
C
$${5 \over 3}$$
D
$$ - {5 \over 3}$$
3
JEE Advanced 2017 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0
Let O be the origin and $$\overrightarrow{OX}$$, $$\overrightarrow{OY}$$, $$\overrightarrow{OZ}$$ be three unit vectors in the directions of the sides $$\overrightarrow{QR}$$, $$\overrightarrow{RP}$$, $$\overrightarrow{PQ}$$ respectively, of a triangle PQR.
|$$\overrightarrow{OX}$$ $$ \times $$ $$\overrightarrow{OY}$$| = ?
A
sin(P + Q)
B
sin(P + R)
C
sin(Q + R)
D
sin2R
4
JEE Advanced 2017 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0
Let p, q be integers and let $$\alpha $$, $$\beta $$ be the roots of the equation, x2 $$-$$ x $$-$$ 1 = 0 where $$\alpha $$ $$ \ne $$ $$\beta $$. For n = 0, 1, 2, ........, let an = p$$\alpha $$n + q$$\beta $$n.

FACT : If a and b are rational numbers and a + b$$\sqrt 5 $$ = 0, then a = 0 = b.
a12 = ?
A
a11 + 2a10
B
2a11 + a10
C
a11 $$-$$ a10
D
a11 + a10
JEE Advanced Papers
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12