1
JEE Advanced 2017 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
Let O be the origin and let PQR be an arbitrary triangle. The point S is such that

$$\overrightarrow{OP}$$ . $$\overrightarrow{OQ}$$ + $$\overrightarrow{OR}$$ . $$\overrightarrow{OS}$$ = $$\overrightarrow{OR}$$ . $$\overrightarrow{OP}$$ + $$\overrightarrow{OQ}$$ . $$\overrightarrow{OS}$$ = $$\overrightarrow{OQ}$$ . $$\overrightarrow{OR}$$ + $$\overrightarrow{OP}$$ . $$\overrightarrow{OS}$$

Then the triangle PQR has S as its
A
centroid
B
orthocentre
C
incentre
D
circumcentre
2
JEE Advanced 2017 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
The equation of the plane passing through the point (1, 1, 1) and perpendicular to the planes 2x + y $$-$$ 2z = 5 and 3x $$-$$ 6y $$-$$ 2z = 7 is
A
14x + 2y $$-$$ 15z = 1
B
$$-$$14x + 2y + 15z = 3
C
14x $$-$$ 2y + 15z = 27
D
14x + 2y + 15z = 31
3
JEE Advanced 2017 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
f : R $$ \to $$ R is a differentiable function such that f'(x) > 2f(x) for all x$$ \in $$R, and f(0) = 1 then
A
f(x) > e2x in (0, $$\infty $$)
B
f'(x) < e2x in (0, $$\infty $$)
C
f(x) is increasing in (0, $$\infty $$)
D
f(x) is decreasing in (0, $$\infty $$)
4
JEE Advanced 2017 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
If $$I = \sum\nolimits_{k = 1}^{98} {\int_k^{k + 1} {{{k + 1} \over {x(x + 1)}}} dx} $$, then
A
$$I > {\log _e}99$$
B
$$I < {\log _e}99$$
C
$$I < {{49} \over {50}}$$
D
$$I > {{49} \over {50}}$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12