1
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-0
Match the statement in Column-$$I$$ with the values in Column-$$II$$

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column-$$I$$
(A)$$\,\,\,\,$$ A line from the origin meets the lines $$\,{{x - 2} \over 1} = {{y - 1} \over { - 2}} = {{z + 1} \over 1}$$
and $${{x - {8 \over 3}} \over 2} = {{y + 3} \over { - 1}} = {{z - 1} \over 1}$$ at $$P$$ and $$Q$$ respectively. If length $$PQ=d,$$ then $${d^2}$$ is
(B)$$\,\,\,\,$$ The values of $$x$$ satisfying $${\tan ^{ - 1}}\left( {x + 3} \right) - {\tan ^{ - 1}}\left( {x - 3} \right) = {\sin ^{ - 1}}\left( {{3 \over 5}} \right)$$ are
(C)$$\,\,\,\,$$ Non-zero vectors $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c \,\,$$ satisfy $$\overrightarrow a \,.\,\overrightarrow b \, = 0.$$
$$\left( {\overrightarrow b - \overrightarrow a } \right).\left( {\overrightarrow b + \overrightarrow c } \right) = 0$$ and $$2\left| {\overrightarrow b + \overrightarrow c } \right| = \left| {\overrightarrow b - \overrightarrow a } \right|.$$
If $$\overrightarrow a = \mu \overrightarrow b + 4\overrightarrow c \,\,,$$ then the possible values of $$\mu $$ are
(D)$$\,\,\,\,$$ Let $$f$$ be the function on $$\left[ { - \pi ,\pi } \right]$$ given by $$f(0)=9$$
and $$f\left( x \right) = \sin \left( {{{9x} \over 2}} \right)/\sin \left( {{x \over 2}} \right)$$ for $$x \ne 0$$
The value of $${2 \over \pi }\int_{ - \pi }^\pi {f\left( x \right)dx} $$ is

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$Column-$$II$$
(p)$$\,\,\,\,$$ $$-4$$
(q)$$\,\,\,\,$$ $$0$$
(r)$$\,\,\,\,$$ $$4$$
(s)$$\,\,\,\,$$ $$5$$
(t)$$\,\,\,\,$$ $$6$$

A
$$\left( A \right) \to t;\,\,\left( B \right) \to p,r;\,\,\left( C \right) \to q,s;\,\,\left( D \right) \to r$$
B
$$\left( A \right) \to r;\,\,\left( B \right) \to p;\,\,\left( C \right) \to q,s;\,\,\left( D \right) \to r$$
C
$$\left( A \right) \to t;\,\,\left( B \right) \to p,r;\,\,\left( C \right) \to q;\,\,\left( D \right) \to r$$
D
$$\left( A \right) \to t;\,\,\left( B \right) \to r;\,\,\left( C \right) \to q,s;\,\,\left( D \right) \to r$$
2
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Match the statements in Column I with those in Column II.

[Note : Here z takes value in the complex plane and Im z and Re z denotes, respectively, the imaginary part and the real part of z.]

Column I


(A) The set of points z satisfying $$\left| {z - i} \right|\left. {z\,} \right\|\,\, = \left| {z + i} \right|\left. {\,z} \right\|$$ is contained in or equal to
(B) The set of points z satisfying $$\left| {z + 4} \right| + \,\left| {z - 4} \right| = 10$$ is contained in or equal to
(C) If $$\left| w \right|$$= 2, then the set of points $$z = w - {1 \over w}$$ is contained in or equal to
(D) If $$\left| w \right|$$ = 1, then the set of points $$z = w + {1 \over w}$$ is contained in or equal to.

Column II


(p) an ellipse with eccentricity $${4 \over 5}$$
(q) the set of points z satisfying Im z = 0
(r) the set of points z satisfying $$\left| {{\rm{Im }}\,{\rm{z }}} \right| \le 1$$
(s) the set of points z satisfying $$\,\left| {{\mathop{\rm Re}\nolimits} \,\,z} \right| < 2$$
(t) the set of points z satisfying $$\left| {\,z} \right| \le 3$$
A
(A) - q, s ; (B) - p ; (C) - p, t ; (D) - q, r, s, t
B
(A) - q, r ; (B) - p ; (C) - p, s, t ; (D) - q, r, s, t
C
(A) - p, r ; (B) - p ; (C) - p, t ; (D) -q, r, s, t
D
(A) - p ; (B) - q ; (C) - r, s ; (D) -q, r, s, t
3
IIT-JEE 2010 Paper 2 Offline
Numerical
+4
-0
Consider a triangle $$ABC$$ and let $$a, b$$ and $$c$$ denote the lengths of the sides opposit to vertices $$A, B$$ and $$C$$ respectively. Suppose $$a = 6,b = 10$$ and the area of the triangle is $$15\sqrt 3 $$, if $$\angle ACB$$ is obtuse and if $$r$$ denotes the radius of the incircle of the triangle, then r2 is equal to :
Your input ____
4
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
If the distance of the point $$P(1, -2, 1)$$ from the plane $$x+2y-2z$$$$\, = \alpha ,$$ where $$\alpha > 0,$$ is $$5,$$ then the foot of the perpendicular from $$P$$ to the planes is
A
$$\left( {{8 \over 3},{4 \over 3}, - {7 \over 3}} \right)$$
B
$$\left( {{4 \over 3},-{4 \over 3}, {1 \over 3}} \right)$$
C
$$\left( {{1 \over 3},{2 \over 3}, {10 \over 3}} \right)$$
D
$$\left( {{2 \over 3},-{1 \over 3}, {5 \over 3}} \right)$$
JEE Advanced Papers
EXAM MAP