1
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
If the distance of the point $$P(1, -2, 1)$$ from the plane $$x+2y-2z$$$$\, = \alpha ,$$ where $$\alpha > 0,$$ is $$5,$$ then the foot of the perpendicular from $$P$$ to the planes is
A
$$\left( {{8 \over 3},{4 \over 3}, - {7 \over 3}} \right)$$
B
$$\left( {{4 \over 3},-{4 \over 3}, {1 \over 3}} \right)$$
C
$$\left( {{1 \over 3},{2 \over 3}, {10 \over 3}} \right)$$
D
$$\left( {{2 \over 3},-{1 \over 3}, {5 \over 3}} \right)$$
2
IIT-JEE 2010 Paper 2 Offline
Numerical
+4
-0
Two parallel chords of a circle of radius 2 are at a distance $$\sqrt 3 + 1$$ apart. If the chords subtend at the center , angles of $${\pi \over k}$$ and $${{2\pi } \over k},$$ where$$k > 0,$$ then the value of $$\left[ k \right]$$ is

[Note :[k] denotes the largest integer less than or equal to k ]

Your input ____
3
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
For $$r = 0,\,1,....,$$ let $${A_r},\,{B_r}$$ and $${C_r}$$ denote, respectively, the coefficient of $${X^r}$$ in the expansions of $${\left( {1 + x} \right)^{10}},$$ $${\left( {1 + x} \right)^{20}}$$ and $${\left( {1 + x} \right)^{30}}.$$
Then $$\sum\limits_{r = 1}^{10} {{A_r}\left( {{B_{10}}{B_r} - {C_{10}}{A_r}} \right)} $$ is equal to
A
$$\left( {{B_{10}} - {C_{10}}} \right)$$
B
$${A_{10}}\left( {{B^2}_{10}{C_{10}}{A_{10}}} \right)$$
C
$$0$$
D
$${{C_{10}} - {B_{10}}}$$
4
IIT-JEE 2010 Paper 2 Offline
Numerical
+4
-0
Let $${a_1},\,{a_{2\,}},\,{a_3}$$......,$${a_{11}}$$ be real numbers satisfying $${a_1} = 15,27 - 2{a_2} > 0\,\,and\,\,{a_k} = 2{a_{k - 1}} - {a_{k - 2}}\,\,for\,k = 3,4,........11$$. if $$\,\,\,{{a_1^2 + a_2^2 + .... + a_{11}^2} \over {11}} = 90$$, then the value of $${{{a_1} + {a_2} + .... + {a_{11}}} \over {11}}$$ is equal to :
Your input ____
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12