The orthocentre of the triangle $$PAB$$ is
such that $$f'\left( x \right) = 2010\left( {x - 2009} \right){\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4}$$ for all $$x \in $$$$R$$
If $$g$$ is a function defined on $$R$$ with values in the interval $$\left( {0,\infty } \right)$$ such that
$$$f\left( x \right) = ln\,\left( {g\left( x \right)} \right),\,\,for\,\,all\,\,x \in R$$$
then the number of points in $$R$$ at which $$g$$ has a local maximum is ___________.
Let $k$ be a positive real number and let
$$ \begin{aligned} A & =\left[\begin{array}{ccc} 2 k-1 & 2 \sqrt{k} & 2 \sqrt{k} \\ 2 \sqrt{k} & 1 & -2 k \\ -2 \sqrt{k} & 2 k & -1 \end{array}\right] \text { and } \\\\ \mathbf{B} & =\left[\begin{array}{ccc} 0 & 2 k-1 & \sqrt{k} \\ 1-2 k & 0 & 2 \sqrt{k} \\ -\sqrt{k} & -2 \sqrt{k} & 0 \end{array}\right] . \end{aligned} $$
If $\operatorname{det}(\operatorname{adj} A)+\operatorname{det}(\operatorname{adj} B)=10^6$, then $[k]$
is equal to _________.
[ Note : adj M denotes the adjoint of a square matrix M and $[k]$ denotes the largest integer less than or equal to $k$ ].