1
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1

Tangents are drawn from the point $$P(3, 4)$$ to the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$ touching the ellipse at points $$A$$ and $$B$$.

The coordinates of $$A$$ and $$B$$ are

A
$$(3,0)$$ and $$(0,2)$$
B
$$\left( { - {8 \over 5},{{2\sqrt {161} } \over {15}}} \right)$$ and $$\left( { - {9 \over 5},{8 \over 5}} \right)$$
C
$$\left( { - {8 \over 5},{{2\sqrt {161} } \over {15}}} \right)$$ and $$(0,2)$$
D
$$(3,0)$$ and $$\left( { - {9 \over 5},{8 \over 5}} \right)$$
2
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1

Tangents are drawn from the point $$P(3, 4)$$ to the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$ touching the ellipse at points $$A$$ and $$B$$.

The equation of the locus of the point whose distances from the point $$P$$ and the line $$AB$$ are equal, is

A
$$9{x^2} + {y^2} - 6xy - 54x - 62y + 241 = 0$$
B
$${x^2} + 9{y^2} + 6xy - 54x + 62y - 241 = 0$$
C
$$9{x^2} + 9{y^2} - 6xy - 54x - 62y - 241 = 0$$
D
$${x^2} + {y^2} - 2xy + 27x + 31y - 120 = 0$$
3
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Tangents are drawn from the point $$P(3, 4)$$ to the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 4} = 1$$ touching the ellipse at points $$A$$ and $$B$$.

The orthocentre of the triangle $$PAB$$ is

A
$$\left( {5,{8 \over 7}} \right)$$
B
$$\left( {{7 \over 5},{{25} \over 8}} \right)$$
C
$$\left( {{11 \over 5},{{8} \over 5}} \right)$$
D
$$\left( {{8 \over 25},{{7} \over 5}} \right)$$
4
IIT-JEE 2010 Paper 2 Offline
Numerical
+4
-0
Let $$f$$ be a function defined on $$R$$ (the set of all real numbers)
such that $$f'\left( x \right) = 2010\left( {x - 2009} \right){\left( {x - 2010} \right)^2}{\left( {x - 2011} \right)^3}{\left( {x - 2012} \right)^4}$$ for all $$x \in $$$$R$$

If $$g$$ is a function defined on $$R$$ with values in the interval $$\left( {0,\infty } \right)$$ such that $$$f\left( x \right) = ln\,\left( {g\left( x \right)} \right),\,\,for\,\,all\,\,x \in R$$$
then the number of points in $$R$$ at which $$g$$ has a local maximum is ___________.

Your input ____
JEE Advanced Papers
EXAM MAP