1
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Consider the polynomial
$$f\left( x \right) = 1 + 2x + 3{x^2} + 4{x^3}.$$
Let $$s$$ be the sum of all distinct real roots of $$f(x)$$ and let $$t = \left| s \right|.$$
The real numbers lies in the interval
2
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Consider the polynomial
$$f\left( x \right) = 1 + 2x + 3{x^2} + 4{x^3}.$$
Let $$s$$ be the sum of all distinct real roots of $$f(x)$$ and let $$t = \left| s \right|.$$
The function$$f'(x)$$ is
3
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
A signal which can be green or red with probability $${4 \over 5}$$ and $${1 \over 5}$$ respectively, is received by station A and then transmitted to station $$B$$. The probability of each station receving the signal correctly is $${3 \over 4}$$. If the signal received at atation $$B$$ is green, then the probability that the original signal was green is
4
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
If the distance of the point $$P(1, -2, 1)$$ from the plane $$x+2y-2z$$$$\, = \alpha ,$$ where $$\alpha > 0,$$ is $$5,$$ then the foot of the perpendicular from $$P$$ to the planes is
Paper analysis
Total Questions
Chemistry
8
Mathematics
19
Physics
17
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978