1
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+2
-0.5
Assuming that Hund’s rule is violated, the bond order and magnetic nature of the diatomic molecule B2 is
A
1 and diamagnetic
B
0 and diamagnetic
C
1 and paramagnetic
D
0 and paramagnetic
2
IIT-JEE 2010 Paper 2 Offline
Numerical
+2
-0

The total number of diprotic acids among the following is:

H3PO4, H2SO4, H3PO3, H2CO3, H2S2O7, H3BO3, H3PO2, H2CrO4 and H2SO3

Your input ____
3
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-0
Match the statement in Column-$$I$$ with the values in Column-$$II$$

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column-$$I$$
(A)$$\,\,\,\,$$ A line from the origin meets the lines $$\,{{x - 2} \over 1} = {{y - 1} \over { - 2}} = {{z + 1} \over 1}$$
and $${{x - {8 \over 3}} \over 2} = {{y + 3} \over { - 1}} = {{z - 1} \over 1}$$ at $$P$$ and $$Q$$ respectively. If length $$PQ=d,$$ then $${d^2}$$ is
(B)$$\,\,\,\,$$ The values of $$x$$ satisfying $${\tan ^{ - 1}}\left( {x + 3} \right) - {\tan ^{ - 1}}\left( {x - 3} \right) = {\sin ^{ - 1}}\left( {{3 \over 5}} \right)$$ are
(C)$$\,\,\,\,$$ Non-zero vectors $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c \,\,$$ satisfy $$\overrightarrow a \,.\,\overrightarrow b \, = 0.$$
$$\left( {\overrightarrow b - \overrightarrow a } \right).\left( {\overrightarrow b + \overrightarrow c } \right) = 0$$ and $$2\left| {\overrightarrow b + \overrightarrow c } \right| = \left| {\overrightarrow b - \overrightarrow a } \right|.$$
If $$\overrightarrow a = \mu \overrightarrow b + 4\overrightarrow c \,\,,$$ then the possible values of $$\mu $$ are
(D)$$\,\,\,\,$$ Let $$f$$ be the function on $$\left[ { - \pi ,\pi } \right]$$ given by $$f(0)=9$$
and $$f\left( x \right) = \sin \left( {{{9x} \over 2}} \right)/\sin \left( {{x \over 2}} \right)$$ for $$x \ne 0$$
The value of $${2 \over \pi }\int_{ - \pi }^\pi {f\left( x \right)dx} $$ is

$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$Column-$$II$$
(p)$$\,\,\,\,$$ $$-4$$
(q)$$\,\,\,\,$$ $$0$$
(r)$$\,\,\,\,$$ $$4$$
(s)$$\,\,\,\,$$ $$5$$
(t)$$\,\,\,\,$$ $$6$$

A
$$\left( A \right) \to t;\,\,\left( B \right) \to p,r;\,\,\left( C \right) \to q,s;\,\,\left( D \right) \to r$$
B
$$\left( A \right) \to r;\,\,\left( B \right) \to p;\,\,\left( C \right) \to q,s;\,\,\left( D \right) \to r$$
C
$$\left( A \right) \to t;\,\,\left( B \right) \to p,r;\,\,\left( C \right) \to q;\,\,\left( D \right) \to r$$
D
$$\left( A \right) \to t;\,\,\left( B \right) \to r;\,\,\left( C \right) \to q,s;\,\,\left( D \right) \to r$$
4
IIT-JEE 2010 Paper 2 Offline
MCQ (Single Correct Answer)
+4
-1
Match the statements in Column I with those in Column II.

[Note : Here z takes value in the complex plane and Im z and Re z denotes, respectively, the imaginary part and the real part of z.]

Column I


(A) The set of points z satisfying $$\left| {z - i} \right|\left. {z\,} \right\|\,\, = \left| {z + i} \right|\left. {\,z} \right\|$$ is contained in or equal to
(B) The set of points z satisfying $$\left| {z + 4} \right| + \,\left| {z - 4} \right| = 10$$ is contained in or equal to
(C) If $$\left| w \right|$$= 2, then the set of points $$z = w - {1 \over w}$$ is contained in or equal to
(D) If $$\left| w \right|$$ = 1, then the set of points $$z = w + {1 \over w}$$ is contained in or equal to.

Column II


(p) an ellipse with eccentricity $${4 \over 5}$$
(q) the set of points z satisfying Im z = 0
(r) the set of points z satisfying $$\left| {{\rm{Im }}\,{\rm{z }}} \right| \le 1$$
(s) the set of points z satisfying $$\,\left| {{\mathop{\rm Re}\nolimits} \,\,z} \right| < 2$$
(t) the set of points z satisfying $$\left| {\,z} \right| \le 3$$
A
(A) - q, s ; (B) - p ; (C) - p, t ; (D) - q, r, s, t
B
(A) - q, r ; (B) - p ; (C) - p, s, t ; (D) - q, r, s, t
C
(A) - p, r ; (B) - p ; (C) - p, t ; (D) -q, r, s, t
D
(A) - p ; (B) - q ; (C) - r, s ; (D) -q, r, s, t
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12