The total number of diprotic acids among the following is:
H3PO4, H2SO4, H3PO3, H2CO3, H2S2O7, H3BO3, H3PO2, H2CrO4 and H2SO3
$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$ Column-$$I$$
(A)$$\,\,\,\,$$ A line from the origin meets the lines $$\,{{x - 2} \over 1} = {{y - 1} \over { - 2}} = {{z + 1} \over 1}$$
and $${{x - {8 \over 3}} \over 2} = {{y + 3} \over { - 1}} = {{z - 1} \over 1}$$ at $$P$$ and $$Q$$ respectively. If length $$PQ=d,$$ then $${d^2}$$ is
(B)$$\,\,\,\,$$ The values of $$x$$ satisfying $${\tan ^{ - 1}}\left( {x + 3} \right) - {\tan ^{ - 1}}\left( {x - 3} \right) = {\sin ^{ - 1}}\left( {{3 \over 5}} \right)$$ are
(C)$$\,\,\,\,$$ Non-zero vectors $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c \,\,$$ satisfy $$\overrightarrow a \,.\,\overrightarrow b \, = 0.$$
$$\left( {\overrightarrow b - \overrightarrow a } \right).\left( {\overrightarrow b + \overrightarrow c } \right) = 0$$ and $$2\left| {\overrightarrow b + \overrightarrow c } \right| = \left| {\overrightarrow b - \overrightarrow a } \right|.$$
If $$\overrightarrow a = \mu \overrightarrow b + 4\overrightarrow c \,\,,$$ then the possible values of $$\mu $$ are
(D)$$\,\,\,\,$$ Let $$f$$ be the function on $$\left[ { - \pi ,\pi } \right]$$ given by $$f(0)=9$$
and $$f\left( x \right) = \sin \left( {{{9x} \over 2}} \right)/\sin \left( {{x \over 2}} \right)$$ for $$x \ne 0$$
The value of $${2 \over \pi }\int_{ - \pi }^\pi {f\left( x \right)dx} $$ is
$$\,\,\,\,$$ $$\,\,\,\,$$ $$\,\,\,\,$$Column-$$II$$
(p)$$\,\,\,\,$$ $$-4$$
(q)$$\,\,\,\,$$ $$0$$
(r)$$\,\,\,\,$$ $$4$$
(s)$$\,\,\,\,$$ $$5$$
(t)$$\,\,\,\,$$ $$6$$
[Note : Here z takes value in the complex plane and Im z and Re z denotes, respectively, the imaginary part and the real part of z.]
Column I
(A) The set of points z satisfying $$\left| {z - i} \right|\left. {z\,} \right\|\,\, = \left| {z + i} \right|\left. {\,z} \right\|$$ is contained in or equal to
(B) The set of points z satisfying $$\left| {z + 4} \right| + \,\left| {z - 4} \right| = 10$$ is contained in or equal to
(C) If $$\left| w \right|$$= 2, then the set of points $$z = w - {1 \over w}$$ is contained in or equal to
(D) If $$\left| w \right|$$ = 1, then the set of points $$z = w + {1 \over w}$$ is contained in or equal to.
Column II
(p) an ellipse with eccentricity $${4 \over 5}$$
(q) the set of points z satisfying Im z = 0
(r) the set of points z satisfying $$\left| {{\rm{Im }}\,{\rm{z }}} \right| \le 1$$
(s) the set of points z satisfying $$\,\left| {{\mathop{\rm Re}\nolimits} \,\,z} \right| < 2$$
(t) the set of points z satisfying $$\left| {\,z} \right| \le 3$$
$$\overrightarrow {AB} = 2\widehat i + 10\widehat j + 11\widehat k$$ and $$\,\overrightarrow {AD} = -\widehat i + 2\widehat j + 2\widehat k$$
The side $$AD$$ is rotated by an acute angle $$\alpha $$ in the plane of the parallelogram so that $$AD$$ becomes $$AD'.$$ If $$AD'$$ makes a right angle with the side $$AB,$$ then the cosine of the angle $$\alpha $$ is given by