1
GATE ECE 2008
MCQ (Single Correct Answer)
+1
-0.3
The recursion relation to solve $$x = {e^{ - x}}$$ using Newton $$-$$ Raphson method is
A
$${x_{n + 1}} = {e^{ - {x_n}}}$$
B
$${x_{n + 1}} = {x_n} - {e^{ - {x_n}}}$$
C
$${x_{n + 1}} = {{\left( {1 + {x_n}} \right){e^{ - {x_n}}}} \over {\left( {1 + {e^{ - {x_n}}}} \right)}}$$
D
$${x_{n + 1}} = {{x_n^2 - {e^{ - {x_n}}}\left( {1 + {x_n}} \right) - 1} \over {{x_n} - {e^{ - {x_n}}}}}$$
2
GATE ECE 2008
MCQ (Single Correct Answer)
+2
-0.6
Which of the following is a solution to the differential equation $${d \over {dt}}x\left( t \right) + 3x\left( t \right) = 0,\,\,x\left( 0 \right) = 2?$$
A
$$x\left( t \right) = 3{e^{ - t}}$$
B
$$x\left( t \right) = 2\,{e^{ - 3t}}\,$$
C
$$x\left( t \right) = {{ - 3} \over 2}{t^2}$$
D
$$x\left( t \right) = 3{t^2}$$
3
GATE ECE 2008
MCQ (Single Correct Answer)
+2
-0.6
Consider points $$P$$ and $$Q$$ in $$xy-$$plane with $$P=(1,0)$$ and $$Q=(0,1).$$ The line integral $$2\int\limits_P^Q {\left( {x\,dx + y\,dy} \right)\,\,} $$ along the semicircle with the line segment $$PQ$$ as its diameter
A
is $$-1$$
B
is $$0$$
C
$$1$$
D
depends on the direction (clockwise (or) anti-clockwise) of the semi circle
4
GATE ECE 2008
MCQ (Single Correct Answer)
+2
-0.6
In the Taylor series expansion of $${e^x} + \sin x$$ about the point $$x = \pi ,$$ the coefficient of $${\left( {x = \pi } \right)^2}$$ is
A
$${e^\pi }$$
B
$$0.5$$ $${e^\pi }$$
C
$${e^\pi }$$ $$+1$$
D
$${e^\pi }$$ $$-1$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12