1
GATE ECE 2008
MCQ (Single Correct Answer)
+1
-0.3
The equation sin(z) = 10 has
A
no real (or) complex solution
B
exactly two distinct complex solutions
C
a unique solution
D
an infinite no of complex solutions
2
GATE ECE 2008
MCQ (Single Correct Answer)
+1
-0.3
The recursion relation to solve $$x = {e^{ - x}}$$ using Newton $$-$$ Raphson method is
A
$${x_{n + 1}} = {e^{ - {x_n}}}$$
B
$${x_{n + 1}} = {x_n} - {e^{ - {x_n}}}$$
C
$${x_{n + 1}} = {{\left( {1 + {x_n}} \right){e^{ - {x_n}}}} \over {\left( {1 + {e^{ - {x_n}}}} \right)}}$$
D
$${x_{n + 1}} = {{x_n^2 - {e^{ - {x_n}}}\left( {1 + {x_n}} \right) - 1} \over {{x_n} - {e^{ - {x_n}}}}}$$
3
GATE ECE 2008
MCQ (Single Correct Answer)
+2
-0.6
Which of the following is a solution to the differential equation $${d \over {dt}}x\left( t \right) + 3x\left( t \right) = 0,\,\,x\left( 0 \right) = 2?$$
A
$$x\left( t \right) = 3{e^{ - t}}$$
B
$$x\left( t \right) = 2\,{e^{ - 3t}}\,$$
C
$$x\left( t \right) = {{ - 3} \over 2}{t^2}$$
D
$$x\left( t \right) = 3{t^2}$$
4
GATE ECE 2008
MCQ (Single Correct Answer)
+2
-0.6
Consider points $$P$$ and $$Q$$ in $$xy-$$plane with $$P=(1,0)$$ and $$Q=(0,1).$$ The line integral $$2\int\limits_P^Q {\left( {x\,dx + y\,dy} \right)\,\,} $$ along the semicircle with the line segment $$PQ$$ as its diameter
A
is $$-1$$
B
is $$0$$
C
$$1$$
D
depends on the direction (clockwise (or) anti-clockwise) of the semi circle
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12