1
GATE ECE 2008
MCQ (Single Correct Answer)
+2
-0.6
The number of open right half plane poles of $$$G\left(s\right)\;=\;\frac{10}{s^5\;+2s^4\;+3s^3\;+6s^2\;+5s\;+3}\;is$$$
A
$$0$$
B
1
C
2
D
3
2
GATE ECE 2008
MCQ (Single Correct Answer)
+2
-0.6
A linear, time-invariant, causal continuous time system has a rational transfer function with simple poles at s=-2 and s=-4, and one simple zero at s=-1. A unit step u(t) is applied at the input of the system. At steady state, the output has constant value of 1. The impulse response of this system is
A
[exp(-2t) + exp(-4t)]u(t)
B
[-4exp(-2t) + 12exp(-4t) - exp(-t)]u(t)
C
[-4exp(-2t) + 12exp(-4t)]u(t)
D
[-0.5exp(-2t) + 1.5exp(-4t)]u(t)
3
GATE ECE 2008
MCQ (Single Correct Answer)
+1
-0.3
Step responses of a set of three second-order underdamped systems all have the same percentage overshoot. Which of the following diagrams represents the poles of the three systems?
A
GATE ECE 2008 Control Systems - Time Response Analysis Question 52 English Option 1
B
GATE ECE 2008 Control Systems - Time Response Analysis Question 52 English Option 2
C
GATE ECE 2008 Control Systems - Time Response Analysis Question 52 English Option 3
D
GATE ECE 2008 Control Systems - Time Response Analysis Question 52 English Option 4
4
GATE ECE 2008
MCQ (Single Correct Answer)
+2
-0.6
A signal flow graph of a system is given below. GATE ECE 2008 Control Systems - State Space Analysis Question 26 English

The set of equations that correspond to this signal flow graph is

A
$${d \over {dt}}\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] = \left[ {\matrix{ \beta & { - \gamma } & 0 \cr \gamma & \alpha & 0 \cr { - \alpha } & { - \beta } & 0 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] + \left[ {\matrix{ 1 & 0 \cr 0 & 0 \cr 0 & 1 \cr } } \right]\left( {\matrix{ {{u_1}} \cr {{u_2}} \cr } } \right)$$
B
$${d \over {dt}}\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] = \left[ {\matrix{ 0 & \alpha & \gamma \cr 0 & { - \alpha } & { - \gamma } \cr 0 & \beta & { - \beta } \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] + \left[ {\matrix{ 0 & 0 \cr 0 & 1 \cr 1 & 0 \cr } } \right]\left( {\matrix{ {{u_1}} \cr {{u_2}} \cr } } \right)$$
C
$${d \over {dt}}\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] = \left[ {\matrix{ { - \alpha } & \beta & 0 \cr { - \beta } & { - \gamma } & 0 \cr \alpha & \gamma & 0 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] + \left[ {\matrix{ 1 & 0 \cr 0 & 1 \cr 0 & 0 \cr } } \right]\left( {\matrix{ {{u_1}} \cr {{u_2}} \cr } } \right)$$
D
$${d \over {dt}}\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] = \left[ {\matrix{ { - \gamma } & 0 & \beta \cr \gamma & 0 & \alpha \cr { - \beta } & 0 & { - \alpha } \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right] + \left[ {\matrix{ 0 & 1 \cr 0 & 0 \cr 1 & 0 \cr } } \right]\left( {\matrix{ {{u_1}} \cr {{u_2}} \cr } } \right)$$
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12