1
JEE Advanced 2020 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
Two identical non-conducting solid spheres of same mass and charge are suspended in air from a common point by two non-conducting, massless strings of same length. At equilibrium, the angle between the strings is $$\alpha$$. The spheres are now immersed in a dielectric liquid of density 800 kg m$$-$$3 and dielectric constant 21. If the angle between the strings remains the same after the immersion, then
A
electric force between the spheres remains unchanged
B
electric force between the spheres reduces
C
mass density of the spheres is 840 kg m$$-$$3
D
the tension in the strings holding the spheres remains unchanged
2
JEE Advanced 2020 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
A uniform electric field, $$\overrightarrow E = - 400\sqrt 3 \widehat y$$ NC−1 is applied in a region. A charged particle of mass m carrying positive charge q is projected in this region with an initial speed of 2$$\sqrt {10} $$ $$ \times $$ 106 ms−1 . This particle is aimed to hit a target T, which is 5 m away from its entry point into the field as shown schematically in the figure.
Take $${q \over m}$$ = 1010 Ckg−1 . Then JEE Advanced 2020 Paper 1 Offline Physics - Electrostatics Question 38 English
A
the particle will hit T if projected at an angle 45o from the horizontal
B
the particle will hit T if projected either at an angle 30o or 60o from the horizontal
C
time taken by the particle to hit T could be $$\sqrt {{5 \over 6}} $$ $$\mu $$s as well as $$\sqrt {{5 \over 2}} $$ $$\mu $$s
D
time taken by the particle to hit T is $$\sqrt {{5 \over 3}} $$ $$\mu $$s
3
JEE Advanced 2019 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
An electric dipole with dipole moment $${{{p_0}} \over {\sqrt 2 }}(\widehat i + \widehat j)$$ is held fixed at the origin O in the presence of a uniform electric field of magnitude E0.

JEE Advanced 2019 Paper 2 Offline Physics - Electrostatics Question 31 English

If the potential is constant on a circle of radius R centered at the origin as shown in figure, then the correct statement(s) is/are, ($$ \in $$0 is the permittivity of the free space, R >> dipole size)
A
The magnitude of total electric field on any two points of the circle will be same.
B
Total electric field at point B is $${\overrightarrow E _B}$$ = 0
C
$$R = {\left( {{{{p_0}} \over {4\pi { \in _0}{E_0}}}} \right)^{1/3}}$$
D
Total electric field at point A is

$${\overrightarrow E _A} = \sqrt 2 {E_0}(\widehat i + \widehat j)$$
4
JEE Advanced 2019 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-1
Change Language
A charged shell of radius R carries a total charge Q. Given $$\phi $$ as the flux of electric field through a closed cylindrical surface of height h, radius r and with its center same as that of the shell. Here, center of the cylinder is a point on the axis of the cylinder which is equidistant from its top and bottom surfaces. Which of the following option(s) is/are correct?

[$$ \in $$0 is the permittivity of free space]
A
If h > 2R and r = 4R / 5 then $$\phi $$ = Q / 5 $$ \in $$0
B
If h > 2R and r = 3R / 5 then $$\phi $$ = Q / 5 $$ \in $$0
C
If h > 8R /5 and r = 3R / 5 then $$\phi $$ = 0
D
If h > 2R and r = R then $$\phi $$ = Q / $$ \in $$0
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12