The magnitude of gravitational field at distance ' $r_1$ ' and ' $r_2$ ' from the centre of a uniform sphere of radius ' $R$ ' and mass ' $M$ ' are ' $F_1$ ' and ' $F_2$ ' respectively. The ratio ' $\left(F_1 / F_2\right)$ ' will be (if $r_1>R$ and $r_2
Earth is assumed to be a sphere of radius R. If '$$\mathrm{g}_\phi$$' is value of effective acceleration due to gravity at latitude $$30^{\circ}$$ and '$$g$$' is the value at equator, then the value of $$\left|g-g_\phi\right|$$ is ($$\omega$$ is angular velocity of rotation of earth, $$\cos 30^{\circ}=\frac{\sqrt{3}}{2}$$ )
A body (mass $$\mathrm{m}$$ ) starts its motion from rest from a point distant $$R_0\left(R_0>R\right)$$ from the centre of the earth. The velocity acquired by the body when it reaches the surface of earth will be ( $$\mathrm{G}=$$ universal constant of gravitation, $$\mathrm{M}=$$ mass of earth, $$\mathrm{R}$$ = radius of earth)
Considering earth to be a sphere of radius '$$R$$' having uniform density '$$\rho$$', then value of acceleration due to gravity '$$g$$' in terms of $$R, \rho$$ and $$\mathrm{G}$$ is