1
MHT CET 2021 22th September Morning Shift
+1
-0

The mass of a planet is six times that of the earth. The radius of the planet is twice that of the earth. If the escape velocity from the earth is '$$V_e$$', then the escape velocity from the planet is

A
$$\sqrt{3} \mathrm{~V}_{\mathrm{e}}$$
B
$$\sqrt{2} \mathrm{~V}_{\mathrm{e}}$$
C
$$\mathrm{V}_{\mathrm{e}}$$
D
$$\sqrt{5} \mathrm{~V}_{\mathrm{e}}$$
2
MHT CET 2021 21th September Evening Shift
+1
-0

For a body of mass '$$m$$', the acceleration due to gravity at a distance '$$R$$' from the surface of the earth is $$\left(\frac{g}{4}\right)$$. Its value at a distance $$\left(\frac{R}{2}\right)$$ from the surface of the earth is ( $$R=$$ radius of the earth, $$g=$$ acceleration due to gravity)

A
$$\left(\frac{g}{8}\right)$$
B
$$\left(\frac{9 g}{4}\right)$$
C
$$\left(\frac{4 g}{9}\right)$$
D
$$\left(\frac{\mathrm{g}}{2}\right)$$
3
MHT CET 2021 21th September Evening Shift
+1
-0

The ratio of energy required to raise a satellite of mass '$$m$$' to height '$$h$$' above the earth's surface to that required to put it into the orbit at same height is [ $$\mathrm{R}=$$ radius of earth]

A
$$\frac{h}{R}$$
B
$$\frac{2 h}{\mathrm{R}^2}$$
C
$$\frac{3 \mathrm{~h}}{\mathrm{R}^2}$$
D
$$\frac{2 \mathrm{~h}}{\mathrm{R}}$$
4
MHT CET 2021 21th September Morning Shift
+1
-0

A pendulum is oscillating with frequency '$$n$$' on the surface of the earth. It is taken to a depth $$\frac{R}{2}$$ below the surface of earth. New frequency of oscillation at depth $$\frac{R}{2}$$ is

[ $$R$$ is the radius of earth]

A
$$\mathrm{\frac{n}{3}}$$
B
$$\frac{\mathrm{n}}{\sqrt{2}}$$
C
$$\mathrm{2 n}$$
D
$$\frac{\mathrm{n}}{2}$$
EXAM MAP
Medical
NEET