1
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The height above the earth's surface at which the acceleration due to gravity becomes $\left(\frac{1}{n}\right)$ times the value at the surface is ( $R=$ radius of earth)

A
$\frac{\mathrm{R}}{\sqrt{\mathrm{n}}}$
B
$\mathrm{R} \cdot \sqrt{\mathrm{n}}$
C
$\quad(\sqrt{n}+1) R$
D
$(\sqrt{\mathrm{n}}-1) \mathrm{R}$
2
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The magnitude of gravitational field at distance ' $r_1$ ' and ' $r_2$ ' from the centre of a uniform sphere of radius ' $R$ ' and mass ' $M$ ' are ' $F_1$ ' and ' $F_2$ ' respectively. The ratio ' $\left(F_1 / F_2\right)$ ' will be (if $r_1>R$ and $r_2

A
$\mathrm{\frac{R^2}{r_1 r_2}}$
B
$\frac{\mathrm{R}^3}{\mathrm{r}_1 \mathrm{r}_2^2}$
C
$\frac{\mathrm{R}^3}{\mathrm{r}_1^2 \mathrm{r}_2}$
D
$\frac{\mathrm{R}^4}{\mathrm{r}_1^2 \mathrm{r}_2^2}$
3
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

Earth is assumed to be a sphere of radius R. If '$$\mathrm{g}_\phi$$' is value of effective acceleration due to gravity at latitude $$30^{\circ}$$ and '$$g$$' is the value at equator, then the value of $$\left|g-g_\phi\right|$$ is ($$\omega$$ is angular velocity of rotation of earth, $$\cos 30^{\circ}=\frac{\sqrt{3}}{2}$$ )

A
$$\frac{1}{4} \omega^2 \mathrm{R}$$
B
$$\frac{3}{4} \omega^2 \mathrm{R}$$
C
$$\omega^2 \mathrm{R}$$
D
$$\frac{1}{2} \omega^2 \mathrm{R}$$
4
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

A body (mass $$\mathrm{m}$$ ) starts its motion from rest from a point distant $$R_0\left(R_0>R\right)$$ from the centre of the earth. The velocity acquired by the body when it reaches the surface of earth will be ( $$\mathrm{G}=$$ universal constant of gravitation, $$\mathrm{M}=$$ mass of earth, $$\mathrm{R}$$ = radius of earth)

A
$$2 \mathrm{GM}\left(\frac{1}{\mathrm{R}}-\frac{1}{\mathrm{R}_0}\right)$$
B
$$\left[2 \mathrm{GM}\left(\frac{1}{\mathrm{R}}-\frac{1}{\mathrm{R}_0}\right)\right]^{\frac{1}{2}}$$
C
$$\mathrm{GM}\left(\frac{1}{\mathrm{R}}-\frac{1}{\mathrm{R}_0}\right)$$
D
$$2 \mathrm{GM}\left[\left(\frac{1}{\mathrm{R}}-\frac{1}{\mathrm{R}_0}\right)\right]^{\frac{1}{2}}$$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12