A thin rod of length '$$L$$' is bent in the form of a circle. Its mass is '$$M$$'. What force will act on mass '$$m$$' placed at the centre of this circle?
( $$\mathrm{G}=$$ constant of gravitation)
A body weighs $$300 \mathrm{~N}$$ on the surface of the earth. How much will it weigh at a distance $$\frac{R}{2}$$ below the surface of earth? ( $$R \rightarrow$$ Radius of earth)
A seconds pendulum is placed in a space laboratory orbiting round the earth at a height '$$3 \mathrm{R}$$' from the earth's surface. The time period of the pendulum will be ( $$R=$$ radius of earth)
For a body of mass '$$m$$', the acceleration due to gravity at a distance '$$R$$' from the surface of the earth is $$\left(\frac{g}{4}\right)$$. Its value at a distance $$\left(\frac{R}{2}\right)$$ from the surface of the earth is ( $$R=$$ radius of the earth, $$g=$$ acceleration due to gravity)