Earth is assumed to be a sphere of radius R. If '$$\mathrm{g}_\phi$$' is value of effective acceleration due to gravity at latitude $$30^{\circ}$$ and '$$g$$' is the value at equator, then the value of $$\left|g-g_\phi\right|$$ is ($$\omega$$ is angular velocity of rotation of earth, $$\cos 30^{\circ}=\frac{\sqrt{3}}{2}$$ )
A body (mass $$\mathrm{m}$$ ) starts its motion from rest from a point distant $$R_0\left(R_0>R\right)$$ from the centre of the earth. The velocity acquired by the body when it reaches the surface of earth will be ( $$\mathrm{G}=$$ universal constant of gravitation, $$\mathrm{M}=$$ mass of earth, $$\mathrm{R}$$ = radius of earth)
Considering earth to be a sphere of radius '$$R$$' having uniform density '$$\rho$$', then value of acceleration due to gravity '$$g$$' in terms of $$R, \rho$$ and $$\mathrm{G}$$ is
The value of acceleration due to gravity at a depth '$$d$$' from the surface of earth and at an altitude '$$h$$' from the surface of earth are in the ratio