1
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Time period of simple pendulum on earth's surface is '$$\mathrm{T}$$'. Its time period becomes '$$\mathrm{xT}$$' when taken to a height $$\mathrm{R}$$ (equal to earth's radius) above the earth's surface. Then the value of '$$x$$' will be

A
4
B
2
C
$$\frac{1}{2}$$
D
$$\frac{1}{4}$$
2
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

The height at which the weight of the body becomes $$\left(\frac{1}{9}\right)^{\text {th }}$$ its weight on the surface of earth is $$(\mathrm{R}=$$ radius of earth)

A
8R
B
4R
C
3R
D
2R
3
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

Consider a light planet revolving around a massive star in a circular orbit of radius '$$r$$' with time period '$$T$$'. If the gravitational force of attraction between the planet and the star is proportional to $$\mathrm{r}^{\frac{7}{2}}$$, then $$\mathrm{T}^2$$ is proportional to

A
$$r^{9 / 2}$$
B
$$r^{7 / 2}$$
C
$$r^{5 / 2}$$
D
$$r^{3 / 2}$$
4
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

The radius of the orbit of a geostationary satellite is (mean radius of earth is '$$R$$', angular velocity about own axis is '$$\omega$$' and acceleration due to gravity on earth's surface is '$$g$$')

A
$$\left(\frac{\mathrm{gR}^2}{\omega^2}\right)^{\frac{1}{3}}$$
B
$$\left(\frac{\mathrm{gR}^2}{\omega^2}\right)^{\frac{2}{3}}$$
C
$$\left(\frac{\mathrm{gR}^2}{\omega^2}\right)^{\frac{1}{2}}$$
D
$$\frac{\mathrm{gR}^2}{\omega^2}$$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12