1
MHT CET 2021 20th September Morning Shift
MCQ (Single Correct Answer)
+1
-0

The depth 'd' below the surface of the earth where the value of acceleration due to gravity becomes $$\left(\frac{1}{n}\right)$$ times the value at the surface of the earth is $$(R=$$ radius of the earth)

A
$$\mathrm{R}\left(\frac{\mathrm{n}-1}{\mathrm{n}}\right)$$
B
$$R\left(\frac{n}{n+1}\right)$$
C
$$\frac{R}{n}$$
D
$$\frac{\mathrm{R}}{\mathrm{n}^2}$$
2
MHT CET 2021 20th September Morning Shift
MCQ (Single Correct Answer)
+1
-0

The orbital velocity of an artificial satellite in a circular orbit just above the earth's surface is 'V'. For the satellite orbiting at an altitude of half the earth's radius, the orbital velocity is

A
$$\frac{3}{2}$$V
B
$$\sqrt{\frac{3}{2}}$$V
C
$$\sqrt{\frac{2}{3}}$$V
D
$$\frac{2}{3}$$V
3
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+1
-0

Earth has mass $M_1$ and radius $R_1$. Moon has mass $M_2$ and radius $R_2$. Distance between their centre is $r$. A body of mass $M$ is placed on the line joining them at a distance $\frac{r}{3}$ from centre of the earth. To project the mass $M$ to escape to infinity, the minimum speed required is

A
$\left[\frac{3 G}{r}\left(M_1+\frac{M_2}{2}\right)\right]^{\frac{1}{2}}$
B
$\left[\frac{6 G}{r}\left(M_1+\frac{M_2}{2}\right)\right]^{\frac{1}{2}}$
C
$\left[\frac{6 G}{r}\left(M_1-\frac{M_2}{2}\right)\right]^{\frac{1}{2}}$
D
$\left[\frac{3 G}{r}\left(M_1-\frac{M_2}{2}\right)\right]^{\frac{1}{2}}$
4
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+1
-0

The escape velocity of a body from any planet, whose mass is six times the mass of earth and radius is twice the radius of earth will (v$_e$ = escape velocity of a body from the earth's surface)

A
$2 \sqrt{2} v_e$
B
$\frac{3}{2} v_e$
C
$2 v_e$
D
$\sqrt{3} v_e$
MHT CET Subjects
EXAM MAP