The gravitational potential energy required to raise a satellite of mass ' $m$ ' to height ' $h$ ' above the earth's surface is ' $\mathrm{E}_1$ '. Let the energy required to put this satellite into the orbit at the same height be ' $E_2$ '. If $M$ and $R$ are the mass and radius of the earth respectively then $E_1: E_2$ is
The height above the earth's surface at which the acceleration due to gravity becomes $\left(\frac{1}{n}\right)$ times the value at the surface is ( $R=$ radius of earth)
The magnitude of gravitational field at distance ' $r_1$ ' and ' $r_2$ ' from the centre of a uniform sphere of radius ' $R$ ' and mass ' $M$ ' are ' $F_1$ ' and ' $F_2$ ' respectively. The ratio ' $\left(F_1 / F_2\right)$ ' will be (if $r_1>R$ and $r_2
Earth is assumed to be a sphere of radius R. If '$$\mathrm{g}_\phi$$' is value of effective acceleration due to gravity at latitude $$30^{\circ}$$ and '$$g$$' is the value at equator, then the value of $$\left|g-g_\phi\right|$$ is ($$\omega$$ is angular velocity of rotation of earth, $$\cos 30^{\circ}=\frac{\sqrt{3}}{2}$$ )